English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 51948/87093 (60%)
造訪人次 : 8506328      線上人數 : 133
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/106992


    題名: Discovering time-interval sequential patterns by a pattern growth approach with confidence constraints
    作者: Shyur, Huan-Jyh;Jou, Chi-Chang;Cheng, Chi-Bin;Yen, Chih-Yu
    關鍵詞: Sequential pattern mining;time-interval sequential patterns;pattern growth;confidence
    日期: 2016-07-15
    上傳時間: 2016-08-15
    出版者: 淡江大學管理科學學系
    摘要: Sequential pattern mining is to discover frequent sequential patterns in a sequence database. The technique is applied to fields such as web click-stream mining, failure forecast, and traf- fic analysis. Conventional sequential pattern-mining approaches generally focus only the orders of items; however, the time interval between two consecutive events can be a valuable information when the time of the occurrence of an event is concerned. This study extends the concept of the well-known pattern growth approach, PrefixSpan algorithm, to propose a novel sequential pattern mining approach for sequential patterns with time intervals. Unlike the other time-interval sequential pattern-mining algorithms, the approach concerns the time for the next event to occur more than the timing information with its precedent events. To obtain a more reliable sequential pattern, a new measure of the confidence of a sequential pattern is defined. Experiments are conducted to evaluate the performance of the proposed approach.
    關聯: International Journal of Information and Management Sciences 27(2), p.129-145
    DOI: 10.6186/IJIMS.2016.27.2.4
    顯示於類別:[資訊管理學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    index.html0KbHTML69檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋