English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 52514/87720 (60%)
造访人次 : 9371602      在线人数 : 488
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/106566


    题名: Application of Finite Element Package in the Platform Development for Fluid-Structure Interaction Analysis
    作者: Tsai, Chang-Min;Teng, Chia-I;Wang, Chien-Kai
    关键词: Finite element method of solid mechanics, Computational fluid mechanics, Fluid-structure interaction, Soft materials, Nonlinear elasticity
    日期: 2016-07-24
    上传时间: 2016-04-27 11:17:11 (UTC+8)
    摘要: In the past, most of the fluid-structure interaction researches are concerned with structures of simple shapes or linear elastic materials because analysis programs for such structures are easy to be implemented or available as commercial packages. Little attention has been paid to fluid-structure interaction of complex structural shapes and nonlinear material properties. However, by linking finite element (FE) packages and fluid-structural interaction analysis programs, these types of interaction problems can be easily solved. Peskin’s immersed boundary (IB) method is traditionally used for finding interaction forces between fluids and solid materials along the interface among them. In this study, we carry out fluid-structure interaction analysis by integrating the FE package ABAQUS and the IB method as a research platform. Here, finite element formulations are implemented via ABAQUS to solve the large deformation problems for polymer materials in liquid by introducing fluid-solid interaction forces across the immersed boundaries of the materials through the IB method incorporated in this platform.

    The main themes of this research include the formulations of mechanics which embrace conservation equations, kinematics descriptions and computing algorithms especially developed for elaborating fluid-solid interaction modeling. The concept of the fluid-solid finite element formulations in this research is an adaptation of Peskin’s IB method. In this research presentation, we are further proposing that fluid-solid interaction forces acting on the neighboring fluid and solid particles are naturally action and reaction to each other satisfying Newton’s third law. For boundary value problems in solid mechanics, we consider a hyperelastic material model with the Neo-Hookean material description including nonlinear material behaviors and large shape changes for an isotropic solid to understand mechanical responses of soft materials surrounded by fluids. For model problems of viscous incompressible fluid in fluid dynamics, the Navier-Stoke equations of the incompressible Newtonian fluids are utilized by introducing the finite difference operators and subjecting proper initial and boundary conditions. Finally, we anticipate that this technique will open doors for understanding more physics related to fluid-structure interaction such as physiological states of deformed biological specimens under environmental loadings in liquid.
    關聯: The 12th World Congress on Computational Mechanics & The 6th Asia-Pacific Congress on Computational Mechanics
    显示于类别:[土木工程學系暨研究所] 會議論文

    文件中的档案:

    没有与此文件相关的档案.

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈