English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 51296/86402 (59%)
造訪人次 : 8171433      線上人數 : 71
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/106414

    題名: Spatial-Temporal Model for Count Data
    作者: Chang, Ya-Mei
    關鍵詞: Poisson-lognormal model;Spatial-temporal process;Disease maps;Lasso;group Lasso
    日期: 2015/06/28
    上傳時間: 2016-04-27 11:12:18 (UTC+8)
    摘要: In epidemiology, disease mapping using count data is a very important issue. Under a
    Poisson-lognormal model, we develop a spatial-temporal process. The log transformation
    of the conditional expected number of cases is decomposed as a linear combination of basis
    functions and a stationary process. The problem of mean and covariance estimations can
    be considered as a regression. A subset selection method of Lasso and group Lasso are
    used to choose a suitable subset of the basis functions and estimate the mean and
    covariances. This method can characterize either non-stationary or nearly stationary spatial
    processes, and is computationally efficient for large data sets.
    關聯: 第二十四屆南區統計研討會暨2015中華機率統計學會年會及學術研討會
    顯示於類別:[統計學系暨研究所] 會議論文


    檔案 描述 大小格式瀏覽次數



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋