English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 49378/84106 (59%)
造訪人次 : 7371599      線上人數 : 98
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/106389

    題名: SAX-based Group Stock Portfolio Mining Approach
    作者: Chen, C. H.;Lu, C. Y.;Yu, C. H.
    關鍵詞: genetic algorithms;grouping genetic algorithm;grouping problems;stock portfolio optimization;symbolic aggregate approximation
    日期: 2014-07-02
    上傳時間: 2016-04-27 11:11:33 (UTC+8)
    出版者: IEEE
    摘要: In this paper, symbolic aggregate approximation which is the well-known dimensionality reduction for time series is utilized for enhancing previous approach to mine more useful group stock portfolio by grouping genetic algorithm. Each chromosome consists of three part that are grouping, stock, and stock portfolio parts. Grouping and stock parts represent how to divide stocks into groups. Stock portfolio part means purchased stocks and units. Each individual is evaluated by group balance, portfolio satisfaction and SAX distance. Experiments on a real data are conducted to show merits of the proposed approach.
    關聯: Network-Based Information Systems (NBiS), 2015 18th International Conference, pp.280-285
    DOI: 10.1109/NBiS.2015.44
    顯示於類別:[資訊工程學系暨研究所] 會議論文


    檔案 描述 大小格式瀏覽次數
    NBiS-INCoS-2015-full-program-v14.pdf議程5451KbAdobe PDF3檢視/開啟



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋