English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 54018/88770 (61%)
造访人次 : 10547304      在线人数 : 19
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/106387

    题名: A GA-based approach for mining membership functions and concept-drift patterns
    作者: Chen, C. H.;Li, Y.;Hong, T. P.;Li, Y. K.;Lu, E. H. C.
    关键词: concept drift;data mining;fuzzy association rules;genetic algorithms;membership functions
    日期: 2015-05-25
    上传时间: 2016-04-27 11:11:30 (UTC+8)
    出版者: IEEE
    摘要: Since customers' behaviors may change over time in real applications, algorithms that can be utilized to mine these drift patterns are needed. In this paper, we propose a GA-based approach for mining fuzzy concept-drift patterns. It consists of two phases. The first phase mines membership functions and the second one finds fuzzy concept-drift patterns. In the first phase, appropriate membership functions for items are derived by GA with a designed fitness function. Then, the derived membership functions are utilized to mine fuzzy concept-drift patterns in the second phase. Experiments on simulated datasets are also made to show the effectiveness of the proposed approach.
    關聯: Evolutionary Computation (CEC), 2015 IEEE, pp.2961-2965
    DOI: 10.1109/CEC.2015.7257257
    显示于类别:[資訊工程學系暨研究所] 會議論文


    档案 描述 大小格式浏览次数
    DetailProgram-ver19.pdf議程651KbAdobe PDF26检视/开启



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈