English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 58791/92483 (64%)
造訪人次 : 626537      線上人數 : 36
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/106361

    題名: Intelligent dynamic sliding-mode neural control using recurrent perturbation fuzzy neural networks
    作者: Hsu, Chun-Fei;Chang, Chun-Wei
    關鍵詞: fuzzy neural network;recurrent neural network;intelligent control;sine-cosine perturbed function
    日期: 2016-01-15
    上傳時間: 2016-04-22 13:47:25 (UTC+8)
    出版者: Elsevier BV
    摘要: In this paper, a recurrent perturbation fuzzy neural network (RPFNN) is used to online approximate an unknown nonlinear term in the system dynamics. A sine-cosine perturbed membership function is used to handle rule uncertainties when it is hard to exactly determine the grade of the value of fuzzy sets. Unlike type-2 fuzzy sets use an extra type reduction operation to find the output, the proposed RPFNN does not require heavy computational loading. Meanwhile, this paper proposes an intelligent dynamic sliding-mode neural control (IDSNC) system which is composed of a neural controller and an exponential compensator.
    關聯: Neurocomputing 173(pt.3), pp.734-743
    DOI: 10.1016/j.neucom.2015.08.024
    顯示於類別:[電機工程學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋