English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 52374/87459 (60%)
造访人次 : 9154011      在线人数 : 302
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/106361


    题名: Intelligent dynamic sliding-mode neural control using recurrent perturbation fuzzy neural networks
    作者: Hsu, Chun-Fei;Chang, Chun-Wei
    关键词: fuzzy neural network;recurrent neural network;intelligent control;sine-cosine perturbed function
    日期: 2016-01-15
    上传时间: 2016-04-22 13:47:25 (UTC+8)
    出版者: Elsevier BV
    摘要: In this paper, a recurrent perturbation fuzzy neural network (RPFNN) is used to online approximate an unknown nonlinear term in the system dynamics. A sine-cosine perturbed membership function is used to handle rule uncertainties when it is hard to exactly determine the grade of the value of fuzzy sets. Unlike type-2 fuzzy sets use an extra type reduction operation to find the output, the proposed RPFNN does not require heavy computational loading. Meanwhile, this paper proposes an intelligent dynamic sliding-mode neural control (IDSNC) system which is composed of a neural controller and an exponential compensator.
    關聯: Neurocomputing 173(pt.3), pp.734-743
    DOI: 10.1016/j.neucom.2015.08.024
    显示于类别:[電機工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML76检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈