English  |  正體中文  |  简体中文  |  Items with full text/Total items : 49521/84657 (58%)
Visitors : 7591873      Online Users : 74
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/106220


    Title: Optimizing in-network aggregate queries in wireless sensor networks for energy saving
    Authors: Hung, Chih-Chieh;Peng, Wen-Chih
    Keywords: In-network aggregate query;Sensor data management;Wireless sensor networks
    Date: 2011-07-01
    Issue Date: 2016-04-22 13:42:12 (UTC+8)
    Publisher: Elsevier BV * North-Holland
    Abstract: This study proposes a method of in-network aggregate query processing to reduce the number of messages incurred in a wireless sensor network. When aggregate queries are issued to the resource-constrained wireless sensor network, it is important to efficiently perform these queries. Given a set of multiple aggregate queries, the proposed approach shares intermediate results among queries to reduce the number of messages. When the sink receives multiple queries, it should be propagated these queries to a wireless sensor network via existing routing protocols. The sink could obtain the corresponding topology of queries and views each query as a query tree. With a set of query trees collected at the sink, it is necessary to determine a set of backbones that share intermediate results with other query trees (called non-backbones). First, it is necessary to formulate the objective cost function for backbones and non-backbones. Using this objective cost function, it is possible to derive a reduction graph that reveals possible cases of sharing intermediate results among query trees. Using the reduction graph, this study first proposes a heuristic algorithm BM (standing for Backbone Mapping). This study also develops algorithm OOB (standing for Obtaining Optimal Backbones) that exploits a branch-and-bound strategy to obtain the optimal solution efficiently. This study tests the performance of these algorithms on both synthesis and real datasets. Experimental results show that by sharing the intermediate results, the BM and OOB algorithms significantly reduce the total number of messages incurred by multiple aggregate queries, thereby extending the lifetime of sensor networks.
    Relation: DATA & KNOWLEDGE ENGINEERING 70(7), pp.617-641
    DOI: 10.1016/j.datak.2011.03.008
    Appears in Collections:[資訊工程學系暨研究所] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML74View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback