English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 49983/85139 (59%)
造訪人次 : 7798190      線上人數 : 49
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/106218

    題名: Finding Active Membership Functions for Genetic-Fuzzy Mining
    作者: Chen, C. H.;Hong, T. P.;Lee, Yeong-Chyi;Tseng, Vincent S.
    關鍵詞: Data mining;fuzzy sets;fuzzy association rules;genetic algorithms;membership functions
    日期: 2015-12-01
    上傳時間: 2016-04-22 13:42:09 (UTC+8)
    摘要: Since transactions may contain quantitative values, many approaches have been proposed to derive membership functions for mining fuzzy association rules using genetic algorithms (GAs), a process known as genetic-fuzzy data mining. However, existing approaches assume that the number of linguistic terms is predefined. Thus, this study proposes a genetic-fuzzy mining approach for extracting an appropriate number of linguistic terms and their membership functions used in fuzzy data mining for the given items. The proposed algorithm adjusts membership functions using GAs and then uses them to fuzzify the quantitative transactions. Each individual in the population represents a possible set of membership functions for the items and is divided into two parts, control genes (CGs) and parametric genes (PGs). CGs are encoded into binary strings and used to determine whether membership functions are active. Each set of membership functions for an item is encoded as PGs with real-number schema. In addition, seven fitness functions are proposed, each of which is used to evaluate the goodness of the obtained membership functions and used as the evolutionary criteria in GA. After the GA process terminates, a better set of association rules with a suitable set of membership functions is obtained. Experiments are made to show the effectiveness of the proposed approach.
    關聯: International Journal of Information Technology & Decision Making 14(6)
    DOI: 10.1142/S0219622015500297
    顯示於類別:[資訊工程學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋