English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 51275/86342 (59%)
造訪人次 : 8146406      線上人數 : 106
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/106217


    題名: Exploring Sequential Probability Tree for Movement-based Community Discovery
    作者: Zhu, Wen-Yuan;Peng, Wen-Chih;Hung, Chih-Chieh;Lei, Po-Ruey;Chen, Ling-Jyh
    關鍵詞: Trajectory profile;community structure;trajectory pattern mining
    日期: 2014-11-01
    上傳時間: 2016-04-22 13:42:08 (UTC+8)
    出版者: Institute of Electrical and Electronics Engineers
    摘要: In this paper, we tackle the problem of discovering movement-based communities of users, where users in the same community have similar movement behaviors. Note that the identification of movement-based communities is beneficial to location-based services and trajectory recommendation services. Specifically, we propose a framework to mine movement-based communities which consists of three phases: 1) constructing trajectory profiles of users, 2) deriving similarity between trajectory profiles, and 3) discovering movement-based communities. In the first phase, we design a data structure, called the Sequential Probability tree (SP-tree), as a user trajectory profile. SP-trees not only derive sequential patterns, but also indicate transition probabilities of movements. Moreover, we propose two algorithms: BF (standing for breadth-first) and DF (standing for depth-first) to construct SP-tree structures as user profiles. To measure the similarity values among users\' trajectory profiles, we further develop a similarity function that takes SP-tree information into account. In light of the similarity values derived, we formulate an objective function to evaluate the quality of communities. According to the objective function derived, we propose a greedy algorithm Geo-Cluster to effectively derive communities. To evaluate our proposed algorithms, we have conducted comprehensive experiments on two real data sets. The experimental results show that our proposed framework can effectively discover movement-based user communities.
    關聯: IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 26(11), pp.2717-2730
    DOI: 10.1109/TKDE.2014.2304458
    顯示於類別:[資訊工程學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    Exploring Sequential Probability Tree for Movement-based Community Discovery.pdf1490KbAdobe PDF0檢視/開啟
    index.html0KbHTML100檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋