淡江大學機構典藏:Item 987654321/106170
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 58323/91877 (63%)
造访人次 : 14292512      在线人数 : 115
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/106170


    题名: Graphics processing unit-accelerated multi-resolution exhaustive search algorithm for real-time keypoint descriptor matching in high-dimensional spaces
    作者: Chi-Yi Tsai;Chih-Hung Huang;An-Hung Tsao
    日期: 2016/03/11
    上传时间: 2016-04-22 13:22:53 (UTC+8)
    出版者: The Institution of Engineering and Technology
    摘要: Image keypoint descriptor matching is an important pre-processing task in various computer vision applications. This study first introduces an existing multi-resolution exhaustive search (MRES) algorithm combined with a multi-resolution candidate elimination technique to address this issue efficiently. A graphics processing unit (GPU) acceleration design is then proposed to improve its real-time performance. Suppose that a scale-invariant feature transform like algorithm is used to extract image keypoint descriptors of an input image, the MRES algorithm first computes a multi-resolution table of each keypoint descriptor by using a L1-norm-based dimension reduction approach. Next, a fast candidate elimination algorithm is employed based on the multi-resolution tables to remove all non-candidates from a candidate matching list by using a simple L1-norm computation. However, when the MRES algorithm was implemented on the central processing unit, the authors observed that the step of multi-resolution table building is not computationally efficient, but it is very suitable for parallel implementation on the GPU. Therefore, this study presents a GPU acceleration method for the MRES algorithm to achieve better real-time performance. Experimental results validate the computational efficiency and matching accuracy of the proposed algorithm by comparing with three existing methods.
    關聯: IET Computer Vision 10(3), pp.212-219
    DOI: 10.1049/iet-cvi.2015.0137
    显示于类别:[電機工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML157检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈