淡江大學機構典藏:Item 987654321/106163
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 64178/96951 (66%)
Visitors : 9853562      Online Users : 19735
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/106163


    Title: Reliability sampling plans under progressive type-I interval censoring using cost functions
    Authors: Huang, S.-R.;Wu, S.-J.
    Keywords: exponential distribution;failure analysis;life testing;maximum likelihood estimation;reliability theory;sampling methods
    Date: 2008-09-04
    Issue Date: 2016-04-22 13:22:33 (UTC+8)
    Abstract: This paper gives a reliability sampling plan for progressively type I interval censored life tests when the lifetime follows the exponential distribution. We use the maximum likelihood method to obtain the point estimation of the parameter of failure time distribution. We provide an approach to establish reliability sampling plans which minimize the total cost of life testing under given consumer's and producer's risks. Some numerical studies are investigated to illustrate the proposed approach.
    Relation: IEEE Transactions on Reliability 57(3), p.445-451
    DOI: 10.1109/TR.2008.928239
    Appears in Collections:[Graduate Institute & Department of Statistics] Journal Article

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML160View/Open
    Reliability sampling plans under progressive type-I interval censoring using cost functions.pdf386KbAdobe PDF2View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback