English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 51281/86342 (59%)
造訪人次 : 8151319      線上人數 : 94
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/106127


    題名: Self-assembled structures of 1,3:2,4-di(3,4-dimethylbenzylidene) sorbitol in hydrophobic polymer matrices prepared using different heat treatments
    作者: Wei-Chi Lai;Shen-Jhen Tseng;Po-Hsun Huang
    關鍵詞: Polymer;Nanofibrils;Self-assembly;SEM;SAXS;Nanoarchitectures
    日期: 2015/11/26
    上傳時間: 2016-04-22 13:21:02 (UTC+8)
    出版者: Springer Netherlands
    摘要: We report a method for tuning the nanoarchitectures of 1,3:2,4-di(3,4-dimethylbenzylidene) sorbitol (DMDBS) with poly(vinylidene fluoride) (PVDF) polymer matrices. Hydrophobic PVDF facilitated the formation of nanofibrils during heating. The self-assembly behaviors of DMDBS were further tuned by altering the different heat treatments. When the samples were prepared with a rapid heating rate (shorter annealing time), smaller amounts of melted PVDF were excluded due to the shorter time for aggregation of DMDBS, leading to larger complex structures of DMDBS and PVDF. Therefore, longer and thicker nanofibrils (around 100 nm) were observed using scanning electron microscopy. As the samples were prepared with a slow heating rate (longer annealing time), DMDBS had more time to aggregate, and therefore, larger amounts of melted PVDF were excluded. Smaller complex structures of DMDBS and PVDF caused the formation of shorter and thinner nanofibrils (around 40 nm). In addition, small-angle X-ray scattering results indicated that the longer and thicker nanofibrils were mostly excluded outside the PVDF crystalline bundles after cooling because they were too large to be easily incorporated between the PVDF crystalline lamellae. However, a large portion of the smaller and thinner nanofibrils was trapped between the crystalline lamellae after cooling due to their smaller sizes. As expected, the PVDF spherulitic morphologies were affected, but the PVDF crystalline microstructures were not significantly altered by the addition of DMDBS, as shown by the results from polarized optical microscopy and Fourier transform infrared spectroscopy.
    關聯: Journal of Nanoparticle Research 17(11), pp.456(12 pages)
    DOI: 10.1007/s11051-015-3267-z
    顯示於類別:[化學工程與材料工程學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML59檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋