English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 51296/86402 (59%)
造訪人次 : 8166427      線上人數 : 89
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/106117

    題名: Effects of mixing ratio of binary fine particles on the packing density and filtration characteristics
    作者: Kuo-Jen Hwang;Iou-Liang Lin
    關鍵詞: particle size distribution;microfiltration;cake properties;fluid viscosity;packing porosity;filtration
    日期: 2015/09/12
    上傳時間: 2016-04-22 13:20:38 (UTC+8)
    出版者: Hosokawa Powder Technology Foundation
    摘要: Binary fine particles were dispersed in glycerol aqueous solutions with different mixing ratios to study the effects of particle size distribution and fluid viscosity on the cake properties in dead-end filtration, such as average porosity, average specific filtration resistance and compressibility of cake. The average specific cake filtration resistance increases with increasing the fraction of small particles. However, the lowest cake porosity occurs under the volume fraction of large particles of 0.75. Comparing different methods for porosity estimations, model estimation is more accurate for those particles near pure composition, while simulation method is more suitable for moderate composition of particle mixtures. Furthermore, the cake porosity increases but the average specific cake filtration resistance decreases with increasing fluid viscosity. An 18 % porosity increase and a 30 % filtration resistance decrease are obtained when fluid viscosity increases from 1 to 10 × 10–3 Pa·s. The cake properties, such as the particle packing structure in the cake and the resulting filtration resistance, are affected not only by the particle size distribution but also by the fluid viscosity. The particle size distribution plays a much more important role on the cake compressibility than the fluid viscosity does.
    關聯: KONA Powder and Particle Journal 33, pp.296–303
    DOI: 10.14356/kona.2016013
    顯示於類別:[化學工程與材料工程學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋