淡江大學機構典藏:Item 987654321/106059
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 62797/95867 (66%)
造訪人次 : 3749176      線上人數 : 441
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/106059


    題名: Computations of two-fluid models based on a simple and robust hybrid primitive variable Riemann solver with AUSMD
    作者: Yang-Yao Niu
    關鍵詞: Primitive variable Riemann solver;AUSMD;Two-fluid model;Multi-phase flows
    日期: 2016-03-01
    上傳時間: 2016-04-22 13:17:32 (UTC+8)
    出版者: ELSEVIER
    摘要: This paper is to continue our previous work in 2008 on solving a two-fluid model for compressible liquid–gas flows. We proposed a pressure–velocity based diffusion term original derived from AUSMD scheme of Wada and Liou in 1997 to enhance its robustness. The proposed AUSMD schemes have been applied to gas and liquid fluids universally to capture fluid discontinuities, such as the fluid interfaces and shock waves, accurately for the Ransom's faucet problem, air–water shock tube problems and 2D shock–water liquid interaction problems. However, the proposed scheme failed at computing liquid–gas interfaces in problems under large ratios of pressure, density and volume of fraction. The numerical instability has been remedied by Chang and Liou in 2007 using the exact Riemann solver to enhance the accuracy and stability of numerical flux across the liquid–gas interface. Here, instead of the exact Riemann solver, we propose a simple AUSMD type primitive variable Riemann solver (PVRS) which can successfully solve 1D stiffened water–air shock tube and 2D shock–gas interaction problems under large ratios of pressure, density and volume of fraction without the expensive cost of tedious computer time. In addition, the proposed approach is shown to deliver a good resolution of the shock-front, rarefaction and cavitation inside the evolution of high-speed droplet impact on the wall.
    關聯: Journal of Computational Physics 308, pp.389-410
    DOI: 10.1016/j.jcp.2015.12.045
    顯示於類別:[航空太空工程學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML313檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋