English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 58649/92364 (63%)
造访人次 : 569240      在线人数 : 95
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/105937


    题名: Improving efficiency using the Rao–Blackwell theorem in corrected and conditional score estimation methods for joint models
    作者: Yih-Huei Huang;Wen-Han Hwang;Fei-Yin Chen
    日期: 2016/03/01
    上传时间: 2016-04-22 13:11:34 (UTC+8)
    摘要: Longitudinal covariates in survival models are generally analyzed using random effects models. By framing the estimation of these survival models as a functional measurement error problem, semiparametric approaches such as the conditional score or the corrected score can be applied to find consistent estimators for survival model parameters without distributional assumptions on the random effects. However, in order to satisfy the standard assumptions of a survival model, the semiparametric methods in the literature only use covariate data before each event time. This suggests that these methods may make inefficient use of the longitudinal data. We propose an extension of these approaches that follows a generalization of Rao–Blackwell theorem. A Monte Carlo error augmentation procedure is developed to utilize the entirety of longitudinal information available. The efficiency improvement of the proposed semiparametric approach is confirmed theoretically and demonstrated in a simulation study. A real data set is analyzed as an illustration of a practical application.
    關聯: BIOMETRIC 72(4), p.1136–1144
    DOI: 10.1111/biom.12510
    显示于类别:[數學學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    Improving efficiency using the Rao–Blackwell theorem in corrected and conditional score estimation methods for joint models.pdf152KbAdobe PDF0检视/开启
    index.html0KbHTML208检视/开启
    index.html0KbHTML81检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈