淡江大學機構典藏:Item 987654321/105923
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 58817/92529 (64%)
造訪人次 : 647328      線上人數 : 56
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/105923


    題名: On quadratic logistic regression models when predictor variables are subject to measurement error
    作者: Jakub Stoklosa;Yih-Huei Huang;Elise Furlan;Wen-Han Hwang
    關鍵詞: Functional measurement error;Quadratic logistic regression;Regression calibration;Weighted corrected score
    日期: 2015/10/31
    上傳時間: 2016-04-22 13:11:09 (UTC+8)
    出版者: ELSEVIER
    摘要: Owing to its good properties and a simple model fitting procedure, logistic regression is one of the most commonly used methods applied to data consisting of binary outcomes and one or more predictor variables. However, if the predictor variables are measured with error and the functional relationship between the response and predictor variables is non-linear (e.g., quadratic) then consistent estimation of model parameters is more challenging to develop. To address the effects of measurement error in predictor variables when using quadratic logistic regression models, two novel approaches are developed: (1) an approximated refined regression calibration; and (2) a weighted corrected score method. Both proposed approaches offer several advantages over existing methods in that they are computationally efficient and are straightforward to implement. A simulation study was conducted to evaluate the estimators’ finite sample performance. The proposed methods are also applied on real data from a medical study and an ecological application.
    關聯: Computational Statistics and Data Analysis 95, p.109–121
    DOI: 10.1016/j.csda.2015.09.012
    顯示於類別:[數學學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML11檢視/開啟
    index.html0KbHTML178檢視/開啟
    On quadratic logistic regression models when predictor variables are subject to measurement error.pdf561KbAdobe PDF0檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋