English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 49378/84106 (59%)
造訪人次 : 7359757      線上人數 : 58
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/105922

    題名: A functional inference for multivariate current status data with mismeasured covariate
    作者: Wen, Chi-Chung;Huang, Yih-Huei;Wu, Yuh-Jenn
    關鍵詞: Conditional score;Correlated data;Measurement error;Proportional odds model;Self-consistency
    日期: 2015-07-01
    上傳時間: 2016-04-22 13:11:08 (UTC+8)
    出版者: Springer New York LLC
    摘要: Covariate measurement error problems have been recently studied for current status failure time data but not yet for multivariate current status data. Motivated by the three-hypers dataset from a health survey study, where the failure times for three-hypers (hyperglycemia, hypertension, hyperlipidemia) are subject to current status censoring and the covariate self-reported body mass index may be subject to measurement error, we propose a functional inference method under the proportional odds model for multivariate current status data with mismeasured covariates. The new proposal utilizes the working independence strategy to handle correlated current status observations from the same subject, as well as the conditional score approach to handle mismeasured covariate without specifying the covariate distribution. The asymptotic theory, together with a stable computation procedure combining the Newton–Raphson and self-consistency algorithms, is established for the proposed estimation method. We evaluate the method through simulation studies and illustrate it with three-hypers data.
    關聯: Lifetime Data Analysis 21(3), p.379-396
    DOI: 10.1007/s10985-014-9296-6
    顯示於類別:[數學學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋