English  |  正體中文  |  简体中文  |  Items with full text/Total items : 58323/91876 (63%)
Visitors : 14080986      Online Users : 75
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/105806

    Title: 基於實務型參數最佳化之人形機器人線上步態訓練系統
    Other Titles: Online gait training system based on practical parameters optimization for humanoid robot
    Authors: 胡越陽;Hu, Yueh-Yang
    Contributors: 淡江大學電機工程學系博士班
    Keywords: 人形機器人;線上步態訓練系統;實務型粒子群最佳化;實務型全域最佳引導人工蜂群;參數型中樞型態產生器;humanoid robot;Online Gait Training System;PPSO;PGABC;PCPG
    Date: 2015
    Issue Date: 2016-01-22 15:05:46 (UTC+8)
    Abstract: 本論文針對小型人形機器人提出一個基於實務型參數最佳化之線上步態訓練系統,主要探討行走步態、雜訊環境下之參數最佳化以及線上步態訓練系統等三大項的設計。在行走步態的設計上,本論文提出一個參數型中樞型態產生器(PCPG),其依據腰部與腳部之末端點的關係來產生人形機器人的行走步態。在雜訊環境下之參數最佳化的設計上,本論文提出兩個最佳化演算法:實務型粒子群最佳化(PPSO)以及實務型全域最佳引導人工蜂群(PGABC)。從實驗結果中顯示,所提出的PPSO與PGABC演算法相較於一般的PSO與GABC演算法確實能夠更有效地選取到一組較佳的參數數值。在線上步態訓練系統的設計上,本論文應用所提出的PPSO以及PGABC演算法來自動選取一組較佳之行走步態參數數值,讓人形機器人可以有效且穩定地走到所指定的目標點。首先設計實現一個步態訓練平台,讓人形機器人能夠依據目前之行走步態的參數值來自動地步行至目標點。當機器人走到目標點時,步態訓練平台會自動地將機器人拉回至起始點,然後繼續執行下一組行走步態參數數值的步態訓練。從實驗結果可知,本論文所提出之PPSO與PGABC演算法可以確實有效地找到一組不錯的行走步態參數數值。
    In this dissertation, an online gait training system is proposed for a small-sized humanoid robot based on two practical parameters optimal methods. There are three main designed topics of walking gait, parameters optimization in a noisy environment, and online gait training system. In the walking gait design, a method named Parameter Central Pattern Generator (PCPG) is proposed to generate the walking gait of humanoid robot, and generated by the relationship between waist and feet points. In the parameters optimal design in a noisy environment, two optimal algorithms are proposed: Practical Particle Swarm Optimization (PPSO) and Practical Gbest-guided Artificial Bee Colony (PGABC). Some experiment results are presented to illustrate that the parameter set selected by PPSO and PGABC algorithms is better than that selected by the general PSO and GABC algorithms. In the online gait training system design, the proposed PPSO and PGABC algorithms are applied in the online gait training system to automatically select a better parameter set of walking gait so that the humanoid robot can effectively and stability walk to the assigned goal point. First, a gait training platform is designed and implemented so that the humanoid robot can automatically walk to the assigned goal point according to the current parameters of walking gait. When the robot attains the goal point, the gait training platform will pull it back to the start point. Then the next parameter set will be continuously executed. Finally, some experiment results are presented to illustrate that a better parameter set of walking gait can be efficiently found by the proposed PPSO and PGABC algorithms.
    Appears in Collections:[Graduate Institute & Department of Electrical Engineering] Thesis

    Files in This Item:

    File Description SizeFormat

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback