English  |  正體中文  |  简体中文  |  Items with full text/Total items : 62822/95882 (66%)
Visitors : 4021227      Online Users : 1049
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/105783


    Title: Numerical study of high speed water droplet impact walls by two-fluid model
    Other Titles: 雙流體方程模擬高速液滴撞擊壁面之現象探討
    Authors: 王泓為;Wang, Hong-Wei
    Contributors: 淡江大學航空太空工程學系碩士班
    牛仰堯;Niu, Yang-Yao
    Keywords: 雙流體模型;高速液滴;可壓縮液體;計算流體力學;two fluid model;high speed droplet;compressible liquid;CFD
    Date: 2015
    Issue Date: 2016-01-22 15:05:13 (UTC+8)
    Abstract: 液滴的應用如噴墨印刷、油滴注入燃燒室等,特別是高壓水柱清潔、柴油
    引擎內液滴與壁面的交互作用和飛機飛行穿越雲層水滴撞擊機翼等,使微小液滴衝擊固體表面成為一個重要的物理現象。在本研究中,吾人以 Niu 等人於 2008年發表的 AUSMDV 結合真實黎曼解之通量分離法建立了可壓縮兩項流求解六個方程雙流體模式之數值模擬,用於高速微小液滴以不同的撞擊速度及入射角度撞擊剛性壁面之流體分析。吾人設置撞擊速度 100-500m/s;入射角度 90-30 度,分析其內部壓力變化、震波及擴散波的傳遞以及於壁面產生高速噴流之狀況。模擬結果皆能準確抓到內部物理現象的變化,模擬結果發現,同速度下 2D 的最大壓力比 3D 大;噴流時間也較為延後。液體可壓縮的影響之下,壁面的壓力逐漸上升,其衝擊能量隨初始速度上升而增加;入射角的增加而減少。最大壓力值和文獻的比較發現較為接近一維模型的預測。
    The liquid droplet dynamics are widely seen in the industry application such as inkjet printing, injection in the combustion chamber, high-pressure spray cleaning, droplet-wall interactions in diesel engines, and impact of cloud droplets on airplane wings in which impact of small droplets on a solid surface is a key phenomenon. In this research, the previous numerical codes developed Niu .et al (2008) is combined with the exact Riemann solver scheme as numerical flux splitting to solve the compressible two-fluid six-equation model. We focus on the simulation of high speed micro-droplet impact on a rigid surface by different impact speed and incidence angle. We set 100-500m/s of impact velocity and 30-90 degree of incidence angle to study the related pressure distributions on walls, propagation of shock front and expansion wave inside the droplet and high speed jetting near the surface. The capturing of phenomenon is accurate and robust. Numerical results show that under the same impact condition the maximum pressure simulated by in the 2D case is shown to be bigger than the 3D case; the jet time in the 3D case is relatively delayed. The impact energy increased with high velocity and incidence angle. Numerical validation shows our results is closer to 1D theoretical model.
    Appears in Collections:[航空太空工程學系暨研究所] 學位論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML238View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback