淡江大學機構典藏:Item 987654321/105765
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 62822/95882 (66%)
Visitors : 4028573      Online Users : 575
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/105765


    Title: 電動輔助自行車之智慧型控制系統模擬與分析
    Other Titles: Simulation and analysis of the intelligent control system for an electric assisted bicycle
    Authors: 黃冠偉;Huang, Guan-Wei
    Contributors: 淡江大學機械與機電工程學系碩士班
    楊智旭;Yang, Jr-Syu
    Keywords: 電動輔助自行車;模糊理論;灰色理論;類神經網路;Electric assisted bicycle;Fuzzy Theory;grey theory;Neural Network
    Date: 2015
    Issue Date: 2016-01-22 15:04:42 (UTC+8)
    Abstract: 本論文設計一套電動輔助自行車的智慧型控制器,進行騎乘情況的模擬與分析,以提升其騎乘效率。灰模糊控制系統是以灰色理論結合模糊理論為設計基礎,用灰色理論中的灰色決策概念,以行車速度、曲柄轉速及踩踏扭力來判別騎乘狀態(如平路、上坡和下坡),之後再由模糊控制運算,有效控制輪轂馬達輸出,減少電池電能的浪費,達到節能效果,提升續航里程。
    研究中以Matlab軟體來撰寫程式並進行模擬,經單車訓練平台與實際道路的實驗結果,來設計不同的模擬範例,並以灰模糊控制和傳統扭力控制之模擬結果與實驗結果做比較,證實模擬結果的可信度,能使用灰模糊程式的模擬結果來估計總騎乘時間和騎乘里程,藉此找出最佳的控制參數,減少做道路實驗之麻煩,節省人力與時間的成本。此外,也在灰模糊控制系統裡,加入倒傳遞類神經網路來預測控制器輸出到驅動器之修正電壓訊號,使荷重輕的騎乘者騎乘時,不會有輔助動力過大的問題,避免發生類似暴衝之危險,確保騎乘安全。
    The thesis is to design the intelligent control system for the electric assisted bicycle to increase the riding efficiency by simulation and analysis. The control system is developed by using the grey theory and fuzzy theory together. The riding mode is set up by the riding speed, spin speed and torque signals base on the developed grey decision-making program. Then, the fuzzy controller will send out the optimal voltage output to the motor in order to save more electric energy and increase the total cycling mileage.
    In the research, the control program is designed by using the Matlab. There are several different simulating examples which are decided by the pre-experiments of both bicycle training platform and actual road test. Then, the simulated results are compared with the experimental results. The comparing results show that this developed intelligent controller work very well. Finally, the simulated results can be apply to estimate the total cycling time and the total cycling mileage. It is the advantage for the future application to avoid lots of actual road test. By the way, the Artificial Neural Network(ANN) theory is applied in this grey-fuzzy controller together to compensate the output voltage for the riders with different weight in order to save more electric energy and prevent any dangerous situation.
    Appears in Collections:[Graduate Institute & Department of Mechanical and Electro-Mechanical Engineering] Thesis

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML201View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback