English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 51296/86402 (59%)
造訪人次 : 8153384      線上人數 : 150
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/105701


    題名: 以決策樹結合領域導向方法挖掘不可預期模式
    其他題名: Mining unexpected patterns using decision tree with domain driven approach
    作者: 詹千慧;Chan, Chien-Hui
    貢獻者: 淡江大學資訊工程學系博士班
    蔣璿東
    關鍵詞: 不可預期模式;領域導向資料探勘;決策樹;治療比較;Unexpected pattern;domain-driven data mining;Decision tree;Treatment comparison
    日期: 2015
    上傳時間: 2016-01-22 15:03:03 (UTC+8)
    摘要: 不可預期模式的有趣之處在於,它們與人的既有知識相悖或是出乎意料,所以可能可以提供一些不同的觀點給研究人員參考,並可用以對未來研究的內容與方向提出建議;因此,本研究將提出一個不可預期模式探勘模型,以找出與領域專家前導知識相違背之不可預期模式。傳統資料探勘的過程是強調以資料為中心的模式探勘,環境、人類經驗等等的因素經常是被過濾或是大量的簡化,較不考慮個別使用者的需求或是領域相關的知識。在本研究中是使用醫學上的經陰道超音波引導抽取術之追蹤資料進行分析,由於臨床研究的環境因素較為複雜,所以發展一個可以與使用者互動並將領域前導知識、領域限制及專家知識介入資料探勘過程的模型是很重要的。同時,因醫學資料中經常包含大量數值變數,而決策樹可以同時處理數值及類別型資料,本研究所提出之模型使用決策樹結合領域導向資料探勘中封閉迴圈、深入探勘的概念,比較不同治療方式的治癒率並挖掘不可預期模式。
    Unexpected patterns are interesting because they are contrast with the prior knowledge or unexpected. Therefore, unexpected patterns may provide researchers with different vision for future research. In this study, we propose an unexpected pattern mining model to find patterns that contrast with the prior knowledge of domain users. Traditional data mining emphasizes data-centered mining for interesting patterns. During the data mining process, environmental factors are usually filtered or simplified. Individual user requirements and domain-related knowledge are less considered. In this study, we use retrospective data from transvaginal ultrasound-guided aspirations to conduct our analysis. Since clinical studies are conducted in complex environments, we believe that it is important to develop an interactive mining model that involves prior domain knowledge, constraints, and expert knowledge. Meanwhile, medical data usually contain plenty of continuous variables. Decision tree algorithms can deal with both continuous and categorical variables at same time. Therefore, the proposed model uses decision trees to compare the recovery rates of two different treatments. By applying the concept of domain-driven data mining, we repeatedly utilize decision trees in a closed-loop, in-depth mining process to find unexpected and interesting patterns.
    顯示於類別:[資訊工程學系暨研究所] 學位論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML76檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋