English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 62822/95882 (66%)
造訪人次 : 4019424      線上人數 : 1025
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/105675


    題名: 非絕熱膜蒸餾塔之模擬與設計
    其他題名: Simulation and design of diabatic membrane-based distillation columns
    作者: 林姿吟;Lin, Tzu-Yin
    貢獻者: 淡江大學化學工程與材料工程學系碩士班
    張煖
    關鍵詞: 非絕熱;中空纖維;蒸餾塔;可用能損失;熵增量;diabatic;Hollow fiber;distillation;exergy;entropy production
    日期: 2015
    上傳時間: 2016-01-22 15:02:19 (UTC+8)
    摘要: 本論文以模擬方式探討使用中空纖維模組之絕熱與非絕熱蒸餾塔。本研究利用在Aspen Custom Modeler®(ACM)平台上建立之嚴謹數學模式完成了塔內特性與性能分析,以及熱質傳阻力、操作條件與薄膜參數之影響分析,並且完成非絕熱塔之最佳化分析。本論文探討之模組為陶瓷膜膜組,物質系統為苯-甲苯混合物。
    針對所分析之基本個案而言,阻力分析顯示主要之改善空間是氣體側熱傳係數與薄膜層質傳係數。在參數影響分析方面,對於產物純度之影響以氣化比、回流比和薄膜曲度較其他條件明顯;對於塔之熱負荷而言,氣化比為影響最大的參數;而對於比可用能損失之影響以氣化比與回流比影響程度較大。
    針對非絕熱中空纖維膜蒸餾塔之最佳化分析,本研究提出雙層最佳化方法,外層最佳化是利用實驗設計法與反應表面法決定進料流量、進料組成與熱交換面積,內層最佳化則決定進料位置、精餾段熱交換量與氣提段熱交換量。雙層最佳化又分為採用均一熱交換量分佈、均一可用能損失分佈與線性熱交換量分佈三種情況。在相同之操作條件下,使用線性熱交換量分佈之非絕熱塔的比可用能損失最低,較絕熱塔減少約26.9%,而採用均一可用能損失分佈之非絕熱塔的NTU最高,較絕熱塔增加約25.3%。本研究也完成演進法最佳化分析,是持續地將可用能損失最高位置之部份熱交換量轉移至可用能損失最低位置。在相同操作條件下,演進法最佳化之非絕熱塔的性能與均一熱交換量非絕熱塔接近,但NTU與比可用能損失較絕熱塔分別增加約7.8%與減少約4.9%。
    This thesis investigates the performance of adiabatic and diabatic hollow fiber membrane distillation columns using a rigorous mathematical model built on the Aspen Custom Modeler®(ACM) platform. The separation performance and effects of heat and mass transfer resistance, operating conditions and device variables are analyzed. For the diabatic distillation columns, the internal heat exchange is optimized. The distillation column studied employs a ceramic hollow fiber membrane and the mixture system studied is benzene-toluene.
    For the base case, the major resistances are contributed by vapor side heat transfer and membrane mass transfer. The key parameters affecting product purity are boilup ratio, reflux ratio and membrane tortuosity.The heat duty and specific exergy loss are mostly affected by the boilup ratio and by the boilup ratio and reflux ratio, respectively.
    For the optimization of diabatic column, a two-level optimization approach is proposed. The inner layer optimize the feed location and the heat exchange rates of rectifying and stripping sections. The outer layer optimize the feed flowrate and composition as well as the heat exchange area. The outer layer study employs experimental design and response surface method. Three heat exchange distribution principles, including equal of heat exchange rate (EoQ), equal of entropy production (EoEP) and linear heat exchange rate (LQ), were adopted in the optimization analysis. Under the same operation conditions, the specific exergy loss of LQ column is the lowest and is reduced by 26.9% compared to adiabatic column. The NTU (number of transfer unit) of EoEP column is the highest and is increased by 25.28% compared to the adiabatic column. This study also presents the results of the evolutionary optimization, which continuously moves certain portion of the heat exchange rate from the location of the highest exergy loss to the location of the lowest exergy loss. The performance of optimal evolutionary column is close to that of the EoQ column with the NTU and the specific exergy loss increased by 7.8% and decreased by 4.9% compared to adiabatic column.
    顯示於類別:[化學工程與材料工程學系暨研究所] 學位論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML102檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋