English  |  正體中文  |  简体中文  |  Items with full text/Total items : 49983/85139 (59%)
Visitors : 7799094      Online Users : 69
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/105544


    Title: 應用平行關聯演算法於中式速食連鎖餐廳之套餐設計
    Other Titles: Applying parallel association algorithms to value meal design for a Chinese fast food chain restaurant
    Authors: 蘇育群;Su, Yu-Chung
    Contributors: 淡江大學資訊管理學系碩士班
    鄭啟斌;Cheng, Chi-Bin
    Keywords: 關聯規則;中式速食;最佳化問題;平行運算;Association rules;FP-growth;Chinese fast food;optimization problem;parallel computing
    Date: 2015
    Issue Date: 2016-01-22 14:58:46 (UTC+8)
    Abstract: 隨著國人外食習慣逐漸增長,餐飲業發展也備受關注,而中式速食是餐飲業提升其經營效率的一個方向。本研究之個案公司即為一中式複合式快餐連鎖業者,該公司之策略為提升顧客消費單價與提升服務速度,並確立以提升套餐選購率做為行動方針。而該公司套餐是以固定的基底內容再加上特色主餐與主食類品項而成。欲實施此行動方針,必須確保固定的套餐基底內容是否符合顧客喜好,以及該基底內容價錢是否合乎其水準。因此,本研究利用個案公司所提供的POS資料中找尋到隱含的顧客喜好並透過關聯分析找出餐點品項間的關聯性。本研究亦將套餐基底設計視為最佳化問題,欲將套餐基底品項間的關聯最大化,並以求解所得之最佳套餐基底作為套餐設計之依據。本研究考量到POS資料隨營運成長將造成的效率問題,因此建置hadoop分散式運算平台,並採用平行FP-Growth 演算法作為關聯分析工具。透過資料清除、篩選、探勘、套入模型後本研究方法以個案公司之POS資料實證,結果顯示,透過本研究所提出的方法設計出求解所得之套餐基底內容,品項間的支持度較原有之套餐基底內容高,且價錢也在合理範圍內,顯示本研究方法於實務上的可行性。
    As the growth of dining-out population in the recent years, the development of the food and beverage industry is getting attention, and Chinese fast-food restaurants are particularly considered as the way to improve the operating efficiency in the food and beverage industry. The case company of this study is a Chinese fast food chain restaurant. To enhance its operating efficiency, the company''s tactics are to encourage the expenditure by customer per transaction and to improve the service speed by serving more value meals (i.e. combo) to customers. The design of the company’s value meal is based on some fixed base items coupled with main dishes. To implement this operational policy, the company must confirm that the base items for value meals meet customer preferences, as well as appropriate prices. This study utilizes the POS data to find implicit information regarding customer preferences by the association analysis between individual items. The design of the value meal base is considered as an optimization problem where the objective is to maximize the overall associations in a value meal base. Considering the fast growth of POS data in the future, we adopt Hadoop as the computing platform, and use parallel FP-Growth algorithm for association analysis. Through data cleaning, filtering, and solving the optimization model, the empirical results confirm that the proposed approach is feasible. The results demonstrate that our designs of value meals render greater associations among items in a value meals than the current menu of the company can support.
    Appears in Collections:[資訊管理學系暨研究所] 學位論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML50View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback