English  |  正體中文  |  简体中文  |  Items with full text/Total items : 51296/86402 (59%)
Visitors : 8155936      Online Users : 66
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/105481


    Title: Spatial distribution of NO2 in Taiwan
    Other Titles: 台灣地區二氧化氮之空間分佈
    Authors: 陳易增;Chen, Yi-Zeng
    Contributors: 淡江大學統計學系碩士班
    張雅梅;Chang, Ya-Mei
    Keywords: 二氧化氮;空氣品質;非平穩空間模型;最小角度迴歸法;正最小絕對壓縮挑選機制;空間分佈;NO2;Air quality;non-stationary spatial mode;lars;positive lasso;spatial distribution
    Date: 2015
    Issue Date: 2016-01-22 14:57:02 (UTC+8)
    Abstract: 本研究提出以非平穩空間模型(non-stationary spatial model)應用於台灣地區之二氧化氮資料,此非平穩空間模型為由數個基底函數和數個平穩過程之線性組合。在模型的設定之下,欲估計之參數個數很多,遂以 Tibshirani(1991)提出的『最小絕對壓縮挑選機制』(Least absolute shrinkage and selection operator, Lasso)進行參數估計,此方法具備同時選模與估計參數的優點。透過使用Efron et al.(2004)所提出『最小角度迴歸法』(lars)套件,以R軟體解出最小絕對壓縮挑選機制之估計值將會非常有效及簡單。本研究將分析結果繪製成空間分佈圖,以觀察台灣地區二氧化氮濃度之分佈情形。研究結果顯示二氧化氮月平均濃度在秋季及冬季較高,其相關係數在空間上呈現非平穩性質。
    In this research, a non-stationary spatial model is applied to Taiwan NO2 data. The proposed non-stationary model contains some basis functions and some stationary processes. This model is very flexible to characterize various non-stationary or stationary features. Under the model setting, the number of the parameters needed to be estimated is large. For solving this problem, the Lasso method (Tibshirani, 1996) is used to estimate parameters. Lasso can deal with model selection and parameter estimation simultaneously. The lars package (Efron et al., 2004) in R language is used to solve the Lasso estimate efficiently. The result of the analysis is displayed in plots to observe the NO2 distribution. The monthly mean of the NO2 concentration is higher in autumn and in winter. The feature of correlation reveals the non-stationaraity of this data.
    Appears in Collections:[統計學系暨研究所] 學位論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML64View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback