淡江大學機構典藏:Item 987654321/105477
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 64180/96952 (66%)
Visitors : 11312458      Online Users : 8109
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/105477


    Title: 易感受性之區間設限資料在轉換模型的核函數估計方法
    Other Titles: Transformation model for interval censoring with a cured subgroup by kernel-based estimation
    Authors: 楊新宇;Yang, Hsin-Yu
    Contributors: 淡江大學統計學系碩士班
    陳蔓樺
    Keywords: 區間設限;不易感受性;線性轉換模型;EM演算法;核函數;interval censoring;cure model;transformation model;EM algorithm;kernel
    Date: 2015
    Issue Date: 2016-01-22 14:56:56 (UTC+8)
    Abstract: 隨著醫學科技的進步,臨床醫學研究的發展也越來越蓬勃,藉由臨床研究所獲得的區間設限資料也越來越多。實務上臨床研究追蹤病患的狀況,未能得知確切發病(事件發生)時間,常觀察到發生時間在某個區間時間。此外,感興趣的事件未發生時,一般將此種資料稱為不易感受性的資料,也可稱為治癒資料。因此考慮混合治癒模型並使用邏輯斯迴歸模型對不易感受性的比例做估計。

    本篇考慮使用線性轉換模型分析不易感受性區間設限資料,在未知基底風險函數(Unknown baseline hazard function)的估計利用核函數(Kernel)做平滑估計,並考慮EM演算法和牛頓迭代法估計參數,並經由模擬驗證。
    As time progresses, continuous development, there are more and more interval censoring data with clinical trials. Sometimes, it is hard to observe the exact time of event, but we know the observed failure time falls within a time period. In this thesis, we consider mixture cure models for interval censored data with a cured subgroup, where subjects in this subgroup are not susceptible to the event of interest. We suppose logistic regression to estimate cure proportion.

    In addition, we consider semiparametric transformation models to analysis the event data. We focus on reparametrizing the step function of unknown baseline hazard function by the logarithm of its jump sizes in Chapter 3, and a kernel-based approach for smooth estimation of unknown baseline hazard function in Chapter 4. The EM algorithm is developed for the estimation and simulation studies are conducted.
    Appears in Collections:[Graduate Institute & Department of Statistics] Thesis

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML193View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback