English  |  正體中文  |  简体中文  |  Items with full text/Total items : 52052/87180 (60%)
Visitors : 8894073      Online Users : 90
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/105325

    Title: 非線性電影票房預測模式 : 以美國市場為例
    Other Titles: A nonlinear box office forecasting model : evidence from the U.S. market
    Authors: 簡妤庭;Chien, Yu-Ting
    Contributors: 淡江大學管理科學學系碩士班
    陳怡妃;Chen, I-Fei
    Keywords: 多元適應性雲形迴歸;票房預測;K-means;首週票房;multivariate adaptive regression splines (MARS);box office forecasting;revenue of opening weekend
    Date: 2015
    Issue Date: 2016-01-22 14:53:16 (UTC+8)
    Abstract: 由於消費者需求的變化快速,導致產品的生命週期縮短,新產品的銷售預測成為眾多公司保持競爭優勢的關鍵環節,但如何準確預測銷售一直以來都是困難的問題。電影產業為世界最重要的流行創新產業之一,但其產品生命週期不僅相對其他產業新品短,且每一部新電影的描述資料零星不全,致使預測電影票房的任務更具挑戰性。因此本研究藉由蒐集網路現有口碑資料,及考慮電影的固定效用、首週上映廳數、競爭數、首週票房及季節性等因素,並整合K-Means與多元適應性雲形迴歸(multivariate adaptive regression splines, MARS)以建構電影票房之測預模型,並以美國電影市場為例進行實證分析。
    Motion picture is one of the most important popular creative industries in the world. Its product life cycle is shorter than other industries and each new film’s data is incomplete which leads to a challenging box office forecast. As the result, we gather the online data for movie MAPP, genres, word of mouth, holiday, the number of opening screens and the revenue of opening weekend as the predictors and combine with K-Means and MARS to construct the box office forecasting model. The empirical results of U.S. market shows that the nonlinear and nonparametric model we used not only can effectively deal with the heterogeneous problem but also can obtain the high-efficiency forecasting performance.
    Appears in Collections:[管理科學學系暨研究所] 學位論文

    Files in This Item:

    File Description SizeFormat

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback