English  |  正體中文  |  简体中文  |  Items with full text/Total items : 51931/87076 (60%)
Visitors : 8490768      Online Users : 151
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/105295

    Title: 一些凸函數的不等式的研究
    Other Titles: On some inequalities for convex functions
    Authors: 林琨諭;Lin, Kun-Yu
    Contributors: 淡江大學數學學系碩士班
    Keywords: 厄米阿達碼不等式;凸函數;Hermite-Hadamard inequality;Convex function
    Date: 2015
    Issue Date: 2016-01-22 14:52:33 (UTC+8)
    Abstract: 若f,g:[a,b]→[0,∞) 在 [a,b] 是凸函數,Pachpatte建立了以下的定理:1/(b-a)((∫_a^b)f(x)g(x)dx))≤1/3M(a,b)+1/6N(a,b)其中 M(a,b)=f(a)g(a)+f(b)g(b) 且 N(a,b)=f(a)g(b)+f(b)g(a).本文的主要目的,是要建立一些較此不等式更細緻化的不等式。
    If f,g:[a,b]→[0,∞) are convex functions on [a,b],Pachpatte proved the following:1/(b-a)((∫_a^b)f(x)g(x)dx))≤1/3M(a,b)+1/6N(a,b),where M(a,b)=f(a)g(a)+f(b)g(b) and N(a,b)=f(a)g(b)+f(b)g(a).We give in this paper several refinements of the above inequality.
    Appears in Collections:[數學學系暨研究所] 學位論文

    Files in This Item:

    File Description SizeFormat

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback