English  |  正體中文  |  简体中文  |  Items with full text/Total items : 52052/87180 (60%)
Visitors : 8899534      Online Users : 282
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/105293

    Title: 現狀數據的加法性涉險函數模型在共變數有測量誤差時之分析
    Other Titles: The analysis of current status data in additive hazards model when covariates are subject to measurement errors
    Authors: 許玉華;Hsu, Yu-Hua
    Contributors: 淡江大學數學學系博士班
    黃逸輝;溫啟仲;Huang, Yih-Huei;Wen, Chi-Chung
    Keywords: 存活分析;現狀數據;右設限資料;測量誤差;加法性涉險模型;比例性涉險模型;校正分數;條件分數;延伸校正分數;Current Status Data;Right Censored Data;measurement error;additive hazards model;Proportional hazards Model;Corrected score;Conditional score;extensively corrected score.
    Date: 2015
    Issue Date: 2016-01-22 14:52:30 (UTC+8)
    Abstract: 在統計學中,存活分析(survival analysis)特別是指應變數為存活時間或事件發生時間的相關統計分析,這類研究常存在不同的領域中,例如臨床試驗、醫學、生物醫學、流行病理學等等。然而並非所有的觀察對象其被追蹤(follow-up)的時間都足夠,現狀數據(current status data)是常見的存活設限資料。
    當共變數有測量誤差(measurement error)時,如果忽略測量誤差,會導致估計值的偏差,處理這個問題有校正分數(corrected score)函數、條件分數(conditional score)函數等常被使用的誤差校正方法;最近提出的延伸校正分數(extensively corrected score),可以解決分數函數不偏估計式不存在時的困境,是另一個可供選擇的方法。
    The need for analyzing time-to-event data can arise in a number of applied fields, such as medicine, biology, public health, epidemiology, engineering, economics and demography. A common feature of such data sets is that the event time may not be known completely due to censorings or truncations. In current status data, the event time is not observed directly and is only known to lies before some examining time or not. We consider the estimation problems for current status data under the assumption of additive hazards models when covariates are subject to homogeneous measurement errors.
    We proposed to adopt the point of view from Lin, Oakes and Ying(1998) to transform the problem to a Cox proportional hazard model with right censored data. Nevertheless, the measurement errors in “covariates” become heterogeneous after transform. Some modifications were then developed to accommodate such heterogeneous errors for conventional analyzing methods that include corrected score, conditional score and a newly developed method--the extensively corrected score. Our proposal is shown to perform well in simulation study and is applied to diabetes survey data as an illustration of implementation.
    Appears in Collections:[數學學系暨研究所] 學位論文

    Files in This Item:

    File Description SizeFormat

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback