淡江大學機構典藏:Item 987654321/104666
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64187/96966 (66%)
造访人次 : 11336446      在线人数 : 137
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/104666


    题名: Building Multi-Factor Stock Selection Models Using Balanced Split Regression Trees with Sorting Normalization and Hybrid Variables
    作者: Yeh, I-Cheng;Lien, Che-hui;Ting, Tao-Ming
    关键词: stock markets;stock selection models;multi-factor selection models;balanced split regression trees;sorting normalisation;hybrid variables;Taiwan;modelling;bull markets;bear markets
    日期: 2015-06-30
    上传时间: 2016-01-06 11:06:34 (UTC+8)
    摘要: This research employed regression trees to build the predictive models of the rate of return of the portfolio and conducted an empirical study in the Taiwan stock market. Our study employed the sorting normalisation approach to normalise independent and dependent variables and used balanced split regression trees to improve the defects of the traditional regression trees. The results show (a) using the sorting normalised independent and dependent variables can build a predictive model with a better capability in predicting the rate of return of the portfolio, (b) the balanced split regression trees perform well except in the training period from 1999 to 2000. One possible reason is that the dot-com bubble achieved its peak in 2000 which changes investors' behaviour, (c) during the training period, the predictive ability of the model using data from the bull market outperforms the model using data from the bear market.
    關聯: International Journal of Foresight and Innovation Policy 10(1), pp.48-74
    DOI: 10.1504/IJFIP.2015.070081
    显示于类别:[土木工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    5.C.H.Lien-2015-01.pdf457KbAdobe PDF1检视/开启
    index.html0KbHTML228检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈