English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 51771/86989 (60%)
造訪人次 : 8367491      線上人數 : 96
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/104666

    題名: Building Multi-Factor Stock Selection Models Using Balanced Split Regression Trees with Sorting Normalization and Hybrid Variables
    作者: Yeh, I-Cheng;Lien, Che-hui;Ting, Tao-Ming
    關鍵詞: stock markets;stock selection models;multi-factor selection models;balanced split regression trees;sorting normalisation;hybrid variables;Taiwan;modelling;bull markets;bear markets
    日期: 2015-06-30
    上傳時間: 2016-01-06 11:06:34 (UTC+8)
    摘要: This research employed regression trees to build the predictive models of the rate of return of the portfolio and conducted an empirical study in the Taiwan stock market. Our study employed the sorting normalisation approach to normalise independent and dependent variables and used balanced split regression trees to improve the defects of the traditional regression trees. The results show (a) using the sorting normalised independent and dependent variables can build a predictive model with a better capability in predicting the rate of return of the portfolio, (b) the balanced split regression trees perform well except in the training period from 1999 to 2000. One possible reason is that the dot-com bubble achieved its peak in 2000 which changes investors' behaviour, (c) during the training period, the predictive ability of the model using data from the bull market outperforms the model using data from the bear market.
    關聯: International Journal of Foresight and Innovation Policy 10(1), pp.48-74
    DOI: 10.1504/IJFIP.2015.070081
    顯示於類別:[土木工程學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數
    5.C.H.Lien-2015-01.pdf457KbAdobe PDF0檢視/開啟



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋