English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 55184/89457 (62%)
造訪人次 : 10670958      線上人數 : 68
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/104565

    題名: Intelligent complementary sliding-mode control with dead-zone parameter modification
    作者: Hsu, Chun-Fei;Kuo, Tzu-Chun
    關鍵詞: Neural control;Sliding-mode control;Neural fuzzy inference network;Recurrent neural network
    日期: 2014-10-01
    上傳時間: 2016-01-06 11:03:02 (UTC+8)
    摘要: This paper proposes an intelligent complementary sliding-mode control (ICSMC) system which is composed of a computed controller and a robust controller. The computed controller includes a neural dynamics estimator and the robust compensator is designed to prove a finite L2-gain property. The neural dynamics estimator uses a recurrent neural fuzzy inference network (RNFIN) to approximate the unknown system term in the sense of the Lyapunov function. In traditional neural network learning process, an over-trained neural network would force the parameters to drift and the system may become unstable eventually. To resolve this problem, a dead-zone parameter modification is proposed for the parameter tuning process to stop when tracking performance index is smaller than performance threshold. To investigate the capabilities of the proposed ICSMC approach, the ICSMC system is applied to a one-link robotic manipulator and a DC motor driver. The simulation and experimental results show that favorable control performance can be achieved in the sense of the L2-gain robust control approach by the proposed ICSMC scheme.
    關聯: Applied Soft Computing 23, pp.355-365
    DOI: 10.1016/j.asoc.2014.06.008
    顯示於類別:[電機工程學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋