淡江大學機構典藏:Item 987654321/104337
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64198/96992 (66%)
造訪人次 : 7967449      線上人數 : 9394
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/104337


    題名: Detection of tropical cyclone track changes from the ECMWF ensemble prediction system
    作者: Tsai, Hsiao-Chung;Elsberry, Russell L.
    日期: 2013-02-28
    上傳時間: 2016-01-06 10:55:59 (UTC+8)
    摘要: A cluster analysis of the 51 member European Center for Medium-range Weather Forecasts ensemble forecast tracks of existing tropical storms from the THORPEX Interactive Grand Global Ensemble archive is utilized to detect multiple track solutions, and weighted-mean vector motion (WMVM) tracks are calculated for the ensemble tracks and for the individual track clusters. When three track clusters were present, larger errors occurred in the corresponding deterministic model forecast. Reliability of the European Center for Medium-range Weather Forecasts ensemble forecast tracks when two distinct clusters exist is examined in terms of the hit rates when the cluster with the larger number of members is selected. A larger hit rate is achieved if track clusters with at least 70%, 80%, or 90% of the members are selected. In these situations, the forecaster can select the WMVM tracks for those clusters and have confidence that a more accurate track than the overall WMVM track will generally be predicted.
    關聯: Geophysical Research Letters 40(4), pp.797-801
    DOI: 10.1002/grl.50172
    顯示於類別:[水資源及環境工程學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    Detection of tropical cyclone track changes from the ECMWF ensemble prediction system.pdf643KbAdobe PDF1檢視/開啟
    index.html0KbHTML84檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋