English  |  正體中文  |  简体中文  |  Items with full text/Total items : 49378/84106 (59%)
Visitors : 7364048      Online Users : 76
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/104336


    Title: Opportunities and challenges for extended-range predictions of tropical cyclone impacts on hydrological predictions
    Authors: Tsai, Hsiao-Chung;Russell L. Elsberry
    Keywords: Tropical cyclones;Extended-range ensemble forecast;Forecast verification
    Date: 2013-12-09
    Issue Date: 2016-01-06 10:55:58 (UTC+8)
    Abstract: An opportunity exists to extend support to the decision-making processes of water resource management and hydrological operations by providing extended-range tropical cyclone (TC) formation and track forecasts in the western North Pacific from the 51-member ECMWF 32-day ensemble. A new objective verification technique demonstrates that the ECMWF ensemble can predict most of the formations and tracks of the TCs during July 2009 to December 2010, even for most of the tropical depressions. Due to the relatively large number of false-alarm TCs in the ECMWF ensemble forecasts that would cause problems for support of hydrological operations, characteristics of these false alarms are discussed. Special attention is given to the ability of the ECMWF ensemble to predict periods of no-TCs in the Taiwan area, since water resource management decisions also depend on the absence of typhoon-related rainfall. A three-tier approach is proposed to provide support for hydrological operations via extended-range forecasts twice weekly on the 30-day timescale, twice-daily on the 15-day timescale, and up to four times a day with a consensus of high-resolution deterministic models.
    Relation: Journal of Hydrology 506, pp.42-54
    DOI: 10.1016/j.jhydrol.2012.12.025
    Appears in Collections:[水資源及環境工程學系暨研究所] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML86View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback