English  |  正體中文  |  简体中文  |  Items with full text/Total items : 51921/87065 (60%)
Visitors : 8471943      Online Users : 108
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/104328

    Title: Maximum covariance analysis of typhoon surface wind and rainfall relationships in Taiwan
    Authors: Tsai, Hsiao-Chung;Lee, Tim Hau
    Keywords: Hurricanes;Tropical cyclones;Asia;Rainfall;Wind;Statistical techniques
    Date: 2009-05-01
    Issue Date: 2016-01-06 10:55:46 (UTC+8)
    Abstract: The multivariate relationships between hourly surface wind and rainfall observations during typhoons affecting Taiwan have been investigated with maximum covariance analysis (MCA). Historical surface observations from 1987 to 2004 are used when typhoon centers were located inside the domain of 19°–28°N, 117°–127°E. The three leading MCA modes explain 70%, 20.6%, and 7.6% of the squared covariance fraction, and the correlation coefficients are 0.59, 0.48, and 0.49, respectively. The wind directions of the three leading positive modes are 1) northwesterly flow perpendicular to the Snow Mountain Range (SMR), 2) southwesterly flow toward the river valleys of the southwestern Central Mountain Range (CMR) and the southern SMR, and 3) easterly flow toward the northeastern SMR and the northern CMR. The rainfall patterns of the three principal modes reveal the contrast between the windward and the leeward sides of the mountain ranges. Based on the MCA singular vectors, historical typhoon surface wind patterns are categorized into major types. The results show that the three major wind types consist of 53% of the data, with 25%, 9%, and 19%, respectively, for these wind types. Furthermore, the analyses of the corresponding surface air temperatures, relative humidities, and air pressures also reveal contrasting patterns between the windward and leeward sides.
    Relation: J. Appl. Meteor. Climatol 48, pp.997–1016
    DOI: 10.1175/2008JAMC1963.1
    Appears in Collections:[水資源及環境工程學系暨研究所] 期刊論文

    Files in This Item:

    File Description SizeFormat

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback