淡江大學機構典藏:Item 987654321/103456
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 62805/95882 (66%)
造访人次 : 3942276      在线人数 : 1053
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/103456


    题名: Recovery of Cu(II) by chemical reduction using sodium dithionite
    作者: Yi-Hsuan Chou;Jui-Hsuan Yu;Yang-Min Liang;Pin-Jan Wang;Chi-Wang Li;Shiao-Shing Chen
    关键词: Dithionite;Ligands;Metallic copper;Reduction
    日期: 2015-12-01
    上传时间: 2015-07-25 07:20:54 (UTC+8)
    出版者: Pergamon Press
    摘要: Wastewaters containing Cu(II) along with ligands are ubiquitous in various industrial sectors. Efficacy of treatment processes for copper removal, especially precipitation, is greatly debilitated by ligands. Chemical reduction being commonly employed for production of metal nanoparticles has also been used for removing copper. Addition of ammonia was reported to be essential for improving copper reduction efficiency by increasing copper solubility at alkaline pH values. In this study, chemical reduction was employed to treat ligand-containing wastewater, exploiting the fact that ligands and metals are coexisted in many wastewaters. Result shows that copper ions were removed by either reduction or precipitation mechanisms depending on pH, type of ligands, and mixing condition. Complete copper reduction/removal was achieved under optimal condition. The lowest removal efficiency observed at pH 9.0 for ammonia system is due to formation of nano-sized particles, which are readily to pass through 0.45μm filter used for sample pretreatment before copper analysis. Instead of producing metallic copper, cuprous and copper oxide are identified in the samples collected from ammonia system and EDTA system, respectively. Re-oxidation of metallic copper particles by atmospheric oxygen during sample handling or incomplete reduction of Cu(II) ions during reduction process might be the cause. Finally, reduction process was applied to treat real wastewater, achieving complete removal of copper but only 10% of nickel.
    關聯: Chemosphere 141, pp.183-188
    DOI: 10.1016/j.chemosphere.2015.07.016
    显示于类别:[水資源及環境工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML413检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈