English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 54451/89232 (61%)
造访人次 : 10572285      在线人数 : 17
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/103197

    题名: Output Effect Evaluation Based on Input Features in Neural Incremental Attribute Learning for Better Classification Performance
    作者: Ting Wang;Guan, Sheng-Uei;Ka Lok Man;Jong Hyuk Park;Hsu, Hui-Huang
    贡献者: 淡江大學資訊工程學系
    关键词: pattern classification;neural networks;incremental attribute learning;feature ordering;discrimination ability
    日期: 2014-12-29
    上传时间: 2015-05-21
    出版者: Basel: M D P I AG
    摘要: Machine learning is a very important approach to pattern classification. This paper provides a better insight into Incremental Attribute Learning (IAL) with further analysis as to why it can exhibit better performance than conventional batch training. IAL is a novel supervised machine learning strategy, which gradually trains features in one or more chunks. Previous research showed that IAL can obtain lower classification error rates than a conventional batch training approach. Yet the reason for that is still not very clear. In this study, the feasibility of IAL is verified by mathematical approaches. Moreover, experimental results derived by IAL neural networks on benchmarks also confirm the mathematical validation.
    關聯: Symmetry 7(1), pp.53-66
    DOI: 10.3390/sym7010053
    显示于类别:[資訊工程學系暨研究所] 期刊論文


    档案 描述 大小格式浏览次数
    symmetry-07-00053.pdf549KbAdobe PDF163检视/开启



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈