English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 55990/90025 (62%)
造訪人次 : 11528022      線上人數 : 116
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/103197

    題名: Output Effect Evaluation Based on Input Features in Neural Incremental Attribute Learning for Better Classification Performance
    作者: Ting Wang;Guan, Sheng-Uei;Ka Lok Man;Jong Hyuk Park;Hsu, Hui-Huang
    貢獻者: 淡江大學資訊工程學系
    關鍵詞: pattern classification;neural networks;incremental attribute learning;feature ordering;discrimination ability
    日期: 2014-12-29
    上傳時間: 2015-05-21
    出版者: Basel: M D P I AG
    摘要: Machine learning is a very important approach to pattern classification. This paper provides a better insight into Incremental Attribute Learning (IAL) with further analysis as to why it can exhibit better performance than conventional batch training. IAL is a novel supervised machine learning strategy, which gradually trains features in one or more chunks. Previous research showed that IAL can obtain lower classification error rates than a conventional batch training approach. Yet the reason for that is still not very clear. In this study, the feasibility of IAL is verified by mathematical approaches. Moreover, experimental results derived by IAL neural networks on benchmarks also confirm the mathematical validation.
    關聯: Symmetry 7(1), pp.53-66
    DOI: 10.3390/sym7010053
    顯示於類別:[資訊工程學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數
    symmetry-07-00053.pdf549KbAdobe PDF166檢視/開啟



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋