淡江大學機構典藏:Item 987654321/103162
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 58323/91876 (63%)
造访人次 : 14078215      在线人数 : 64
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/103162


    题名: Dynamics for a two-species competition–diffusion model with two free boundaries
    作者: Guo, Jong-Shenq;Wu, Chang-Hong
    贡献者: 淡江大學數學學系
    日期: 2014-11-25
    上传时间: 2015-05-20 07:08:20 (UTC+8)
    出版者: IOP Publishing
    摘要: To understand the spreading and interaction of two-competing species, we study the dynamics for a two-species competition–diffusion model with two free boundaries. Here, the two free boundaries which describe the spreading fronts of two competing species, respectively, may intersect each other. Our result shows there exists a critical value such that the superior competitor always spreads successfully if its territory size is above this constant at some time. Otherwise, the superior competitor can be wiped out by the inferior competitor. Moreover, if the inferior competitor does not spread fast enough such that the superior competitor can catch up with it, the inferior competitor will be wiped out eventually and then a spreading–vanishing trichotomy is established. We also provide some characterization of the spreading–vanishing trichotomy via some parameters of the model. On the other hand, when the superior competitor spreads successfully but with a sufficiently low speed, the inferior competitor can also spread successfully even the superior species is much stronger than the weaker one. It means that the inferior competitor can survive if the superior species cannot catch up with it.
    關聯: Nonlinearity 28(1), p.1-27
    DOI: 10.1088/0951-7715/28/1/1
    显示于类别:[數學學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    1501non.pdf440KbAdobe PDF418检视/开启
    index.html0KbHTML30检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈