English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 59720/92965 (64%)
造访人次 : 832392      在线人数 : 77
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/103099


    题名: Construction of a Prediction Model for Nephropathy among Obese Patients Using Genetic and Clinical Features
    作者: Huang, Guan-Mau;Chen, Yi-Cheng;Weng, Julia Tzu-Ya
    贡献者: 淡江大學資訊工程學系
    关键词: obesity;nephropathy prediction;personalized diagnostic support system
    日期: 2015-05-19
    上传时间: 2015-05-18 19:25:50 (UTC+8)
    出版者: Springner
    摘要: Obesity is a complex disease arising from an excessive accumula-tion of body fat which leads to various complications such as diabetes, hyper-tension, and renal diseases. The growing prevalence of obesity is also becom-ing a major risk factor for nephropathy. When patients are diagnosed with nephropathy, their progression towards renal failure is usually inevitable. Therefore, a prediction tool will help medical doctors identify patients with a higher risk of developing nephropathy and implement early treatment or pre-vention. In this study, we attempted to construct a diagnostic support system for nephropathy using clinical and genetic traits. Our results show that pre-diction models involving the use of both genetic and clinical features yielded the best classification performance. Our finding is in accordance with the complex nature of obesity-related nephropathy and support the notion of us-ing genetic traits to design a personalized diagnostic model.
    關聯: The 2nd International Workshop on Pattern Mining and Application of Big Data (BigPMA 2015) (in conjunction with PAKDD 2015)
    显示于类别:[資訊工程學系暨研究所] 會議論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html全文0KbHTML71检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈