English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 49378/84106 (59%)
造訪人次 : 7375997      線上人數 : 89
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/103057

    題名: Real-time automatic multilevel color video thresholding using a novel class-variance criterion
    作者: Tsai, Chi-Yi;Liu, Tsung-Yen
    貢獻者: 淡江大學電機工程學系
    關鍵詞: Multi-object segmentation;Nonparametric multilevel color thresholding;Extended within-class variance;Automatic multi-threshold searching
    日期: 2015-04-01
    上傳時間: 2015-05-18 13:04:57 (UTC+8)
    出版者: Heidelberg: Springer
    摘要: Color image segmentation is a crucial preliminary task in robotic vision systems. This paper presents a novel automatic multilevel color thresholding algorithm to address this task efficiently. The proposed algorithm consists of a learning process and a multi-threshold searching process. The learning process learns the color distribution of an input video sequence in HSV color space, and the multi-threshold searching process automatically determines the optimal multiple thresholds to segment all colors-of-interest in the video based on a novel class-variance criterion. For the learning process, a simple and efficient color-distribution learning algorithm operating with a color-pixel extraction method is proposed to learn a color distribution model of all colors-of-interest in the video images, which simplifies the search for optimal thresholds for the colors-of-interest through a conventional multilevel thresholding method. For the multi-threshold searching process, a nonparametric multilevel color thresholding algorithm with an extended within-class variance criterion is proposed to automatically find the optimal upper bound and lower bound threshold values of each color channel. Experimental results validate the performance and computational efficiency of the proposed method by comparing with three existing methods, both visually and quantitatively.
    關聯: Machine Vision and Applications 26(2-3), pp.233-249
    DOI: 10.1007/s00138-014-0655-9
    顯示於類別:[電機工程學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數
    0011.pdf論文2442KbAdobe PDF214檢視/開啟



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋