 English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 52333/87441 (60%) 造访人次 : 9111038      在线人数 : 214
 RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
 搜寻范围 全部機構典藏 理學院    數學學系暨研究所       --研究報告 查询小技巧：您可在西文检索词汇前后加上"双引号"，以获取较精准的检索结果若欲以作者姓名搜寻，建议至进阶搜寻限定作者字段，可获得较完整数据 进阶搜寻
 主页 ‧ 登入 ‧ 上传 ‧ 说明 ‧ 关于機構典藏 ‧ 管理 淡江大學機構典藏 > 理學院 > 數學學系暨研究所 > 研究報告 >  Item 987654321/103010

 jsp.display-item.identifier=請使用永久網址來引用或連結此文件: `http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/103010`

 题名: 諾德問題與p-群 其它题名: Noether\$S Problem and P-Groups 作者: 胡守仁 贡献者: 淡江大學數學學系 日期: 2012-08 上传时间: 2015-05-13 15:46:15 (UTC+8) 摘要: 令K 為一體, G 為一有限群。G 在K(xg | g ∈ G) 的作用為g · xh = xgh。K(G) = K(xg | g ∈ G)G。諾德問題考慮K(G)在K上是否有理(=純超越)。這個問題與反伽羅瓦問題有關。本計劃中我們將延續關於p-群的諾德問題的研究, 此處p為一質數。我們已知當|G| ≤ p4時,K(G) 在K上有理。2008年我們證明了當|G| = 32時,K(G)在K上有理。Bogomolov利用B0(G)建造出秩為|p6| 的群其B0(G) ̸= 0. 我們將秩為64的群分類, 並解決了其有理性問題, 除了G = (G; 64; i),241 ≤ i ≤ 245. Moravec 利用電腦計算證明B0(G) ̸= 0當G = G(243; i), 28 ≤ i ≤ 30. 本計劃中, 我們將研究其他秩為243群的有理性問題。我們並將回頭再看G = G(64; i),241 ≤ i ≤ 245群的有理性問題。最近, 康明昌及Hoshi 證明了存在秩為p5, p ≥ 3的群, 其B0(G) ̸= 0並得到一個這種群的集合與其個數。我們也將研究當|G| = p5且B0(G) ̸= 0 時, 這些群的有理性。Let K be a eld, G be a nite group. Let G acts on K(xg | g ∈ G) by g · xh = xgh. The xed eld K(G) = K(xg | g ∈ G)G. Noether's problem asks whether K(G) is rational (=purely transcendental) over K. This problem is related to inverse Galois problem, the existence of generic G-Galois extensions. In this project, we shall continue our study on Noether's problem for p-groups, where p is a prime. It is known that K(G) is rational for |G| ≤ p4. We proved in 2008 that K(G) is rational for groups of order 25. For groups of order p6, Bogomolov constructed examples of groups of order p6 such that K(G) is not rational by using Bogomolov multiplier B0(G) as an obstruction,. We classi ed groups of order 26 and solved the rationality of K(G) except for groups G(64; i) for 241 ≤ i ≤ 245 where G(n; i) denote the i-th group of order n in GAP data base. Using computer, Moravec was able to prove that B0(G) ̸= 0 for G = G(243; i), 28 ≤ i ≤ 30. In this project, we shall study the rationality of G(243; i), i ̸= 28; 29; 30. We shall also investigate again rationality of K(G) where G = G(64; i), 241 ≤ i ≤ 245. Recently, Kang and Hoshi proved that for p ≥ 3, there exists groups of order p5 with B0(G) ̸= 0 and determined a class of such groups and the number in it. We shall also investigate rationality of K(G) for groups of order p5 with B0(G) ̸= 0. 显示于类别: [數學學系暨研究所] 研究報告

 文件中的档案: 没有与此文件相关的档案.

 TAIR相关文章

 DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈