淡江大學機構典藏:Item 987654321/102854
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 58812/92517 (64%)
造访人次 : 648808      在线人数 : 35
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/102854


    题名: Mining marketing knowledge to explore social network sites and online purchase behaviors
    作者: Liao, Shu-Hsien;Hsiao, Pei-Yuan;Li, Chien-Wen;Lin, Yun-Fei
    贡献者: 淡江大學管理科學學系
    日期: 2015-07-24
    上传时间: 2015-05-07 17:48:48 (UTC+8)
    出版者: Taylor & Francis Inc.
    摘要: Social network sites (SNS), as web-based services, allow users to make open or semiopen profiles within the systems they are part of, to see lists of other people in the group, and to see the relationships of people within different groups. As the development of Internet applications has matured, developing and evaluating business models on social network sites has become a critical issue because these sites can be an innovative source for online marketing. Most studies in Taiwan on the behavior or marketing on SNS focus on either advertising or marketing, without picturing the overall scenario. Thus, this study investigates SNS as a research subject, and explores users’ online and purchase behaviors in the cybercommunity. For this, the study uses the Apriori algorithm as an association rules approach, and cluster analysis for data mining, to categorize four kinds of online user behavior and generate purchase behavior patterns and rules. The results suggest that online users’ SNS and purchase behavior knowledge are critical for the development of online business models.
    關聯: Applied Artificial Intelligence 29(7), pp.679-732
    DOI: 10.1080/08839514.2015.1051892
    显示于类别:[管理科學學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML123检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈