English  |  正體中文  |  简体中文  |  Items with full text/Total items : 58323/91877 (63%)
Visitors : 14376550      Online Users : 96
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/102746

    Title: 石墨烯及其衍生物與染料敏化太陽能電池的物理性質之理論探討
    Other Titles: Theoretical Investigation of Physical Properties in Graphene and Its Related Derivatives, and Dye Sensitived Solar Cells$S Materials
    Authors: 王伯昌
    Contributors: 淡江大學化學學系
    Date: 2012-08
    Issue Date: 2015-05-04 13:56:01 (UTC+8)
    Abstract: 本計劃主要分為以下兩方面進行討論:(a) 太陽能電池之物理性質 (b) 碳相關材 料-硼氮奈帶、石墨烯的理論探討。 (a) 太陽能電池之物理性質 近年來,傳統之非再生能源的儲藏量日漸減少,使得一系列不同的替代能源發展便 廣受到人們注意。而利用光伏科技儲藏太陽光之太陽能電池裝置的發展及其應用,已被 認為是目前具有潛力且必要的研究主題之一。在本計畫中將分染料敏化太陽能電池、異 質接面太陽能電池兩方面。染料敏化太陽能電池方面將以VASP 建立不同型式TiO2 的 結構,並選擇特定的米勒指數(Miller Index),在不同面接上以porphyrin 為主體之染料分 子,以理論計算探討其相關的物理性質、幾何結構及其光學特性等。在異質接面太陽能 電池方面,我們設計不同種類的電子予體和電子受體,討論這類分子材料之幾何結構、 電子結構和吸收光譜,另外也建立此類分子和光電轉換效率之間的關聯性。 (b) 碳相關材料-硼氮奈帶、石墨烯的理論探討 本計畫包含三部分:分別探討硼氮奈米帶(BN Nano-ribbon)、六環狀石墨烯與環加成反 應途徑,分別搭配三種軟體進行理論研究分別為第一原理計算軟體-SIESTA(Spanish Initiative for Electronic Simulations with Thousands of Atoms)、Gaussian 09 之密度泛函理 論(Density Functional Theory, DFT),選取泛函數VSXC 搭配基底函數6-31G(d),搭配週 期性邊界條件(Periodic Boundary Conditions, PBC)、與第一原理計算軟體-VASP(Vienna Ab-initio Simulation Package),依結構硼奈米帶可分為Zigzag 及armchair 兩種形式,在 本研究中,我們依其不一樣之形式,討論其電子性質,探討形狀、末端接取推、拉電子 取代基與其反應機構對於碳相關材料的影響。我們並將延伸環狀石墨烯的計算結果,設 計相關的材料與探討,兩片硼氮奈米帶經過linker 之連接之物理性質,在本計劃中也將 一併探討六環狀的石墨烯最近被提出,雖然其製造之機制尚未被提出,相信未來一定會 被實驗化學家合成製造出來六環狀石墨烯也可為六環硼氮片狀(BN sheet)。
    This proposal could be divided to two different theoretical investigation parts: 1. to investigate the photophysical properties of organic DSSC and BHJ molecules, 2. to investigate the substitution effect and energy gap for graphene, BN sheet and their related materials. 1. Organic DSSC and BHJ molecules Recently, the storage of the non-renewable resource will be decreased rapidly. Therefore, to develop the new energy technology is one of the very important research topics currently. In this proposal the physical properties (e.g. HOMO, LUMO, energy, absorption and emission) of organic dye-sensitized solar cell (DSSC) and bulk heterojunction (BHJ) molecules will be investigated; the substitution effect and electron transition mechanism for these molecules are generated also. The VASP and Gaussian quantum chemistry package will be applied for this calculation. For BHJ materials, the different electron-donating and –withdrawing substituents are designed and discuss their relative photo-physical properties. The possible relationship between HOMO, LUMO and Voc will be figured out according to detail mathematical equation. Furthermore, the optimized structure between DSSC and TiO2 will be generated also. 2. Graphene, BN sheet and their related materials Graphene and BN sheet are generated recently. Since the properties consideration, they will be the most popular materials for next generation. In this proposal, nano-ribbon graphene (including armchair and zigzag types) with different passivation will be investigated, then their physical properties will be discuss up to passivation especial for different passivations. Two naono-ribbon will be connected by linker; it physical properties are generated also. Recently hexagonal BN sheet are proposed; we propose the organic reaction to link these BN sheet. We use quantum chemistry method to generate their properties. In this part, Siesta and Gaussian package will be used.
    Appears in Collections:[Graduate Institute & Department of Chemistry] Research Paper

    Files in This Item:

    There are no files associated with this item.

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback