English  |  正體中文  |  简体中文  |  Items with full text/Total items : 56816/90588 (63%)
Visitors : 12107446      Online Users : 47
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/102716

    Title: 以深度圖像修補為基礎之3D建模
    Other Titles: 3D object reconstruction based on depth image inpainting
    Authors: 謝杰甫;Hsieh, Chieh-Fu
    Contributors: 淡江大學電機工程學系碩士班
    易志孝;Hsiao, Yih-Chi
    Keywords: Kinect Fusion;深度資訊;3D模型;Depth image;3D reconstruction;temporal random fluctuations
    Date: 2014
    Issue Date: 2015-05-04 10:02:32 (UTC+8)
    Abstract: 近年來,深度攝影機的價格越趨近便宜,令更多的研究者能夠使用深度攝影機。相對原本的二維影像,增加深度資訊對於電腦視覺的應用有很大的幫助,但是目前從深度攝影機得到原始的深度影像都有破洞、邊緣不完整、雜訊等問題。因此本論文提出了一個深度影像的修補方法,並將修補後的影像以3D重建的方式重現。首先,對破洞的部分進行偵測,並使用破洞周圍有效的深度資訊以及背景的深度資訊進行破洞的修補。再來,在複雜背景下,彩色資訊的邊緣不明顯,我們使用形態學和中值濾波器對邊緣做修正。在簡單背景下,使用彩色圖像的邊緣對深度圖像進行校正。最後,將得到無破洞且邊緣較完整的深度影像以Kinect Fusion的方法重建3D模型。
    In recent years, the price of depth camera became low, so that researchers can use depth camera to do more application. For computer vision, depth images can provide more useful information. However, generally there are some problems in depth image, such as holes, incomplete edge, and temporal random fluctuations. Therefore, this paper proposes a depth image inpainting method applying on 3D object reconstruction. First, in the holes filling part we use No-measured pixels detection to locate the position of no-measured pixels, and then use the pixels which is near to nmd-pixels to estimate the depth information. Secondly, in complex background the edge of the color image is not obvious, so that we use erosion and dilation operation and median filter to smooth the edge. In simple background, we use our edge modified method to correct the edge of depth image depend on color image. Finally, we use 3D reconstruction method, Kinect Fusion, proposed by Microsoft to modeling the object.
    Appears in Collections:[Graduate Institute & Department of Electrical Engineering] Thesis

    Files in This Item:

    File SizeFormat

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback