English  |  正體中文  |  简体中文  |  Items with full text/Total items : 49378/84106 (59%)
Visitors : 7380940      Online Users : 84
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/102714


    Title: 基於頻寬考量優化節能主伺服器之效能
    Other Titles: Reducing the power consumption of servers with bandwidth consideration
    Authors: 林佑璋;Lin, Yu-Chang
    Contributors: 淡江大學電機工程學系碩士班
    李維聰
    Keywords: 分散式運算;評分機;雲端網路;網路頻寬;MapReduce;Benchmark;Cloud Network
    Date: 2014
    Issue Date: 2015-05-04 10:02:30 (UTC+8)
    Abstract: 近年來雲端系統應用越來越成熟,相對的雲端系統應用也變得更廣泛。MapReduce是一種分散計算系統,雲端系統中越來越多人使用。Hadoop是從Google雲端系統演化出來的開放系統,在雲端的環境中透過虛擬機器或實體機器作分配任務、獲取資源和提供服務,藉由網路將這些功能連結串連起來就可以獲取更大量運算資源,因此軟體運算、硬體效能和網路傳輸速率,都會對分散式運算系統的運算效率產生影響。在許多的論文中提出了一些解決方法,有效的管理伺服器,排程工作依照任務資料運算形式選擇伺服器的選擇等等。為了獲得最大的運算資源,通常會同時開啟多台機器加入運算過程,雖然可以讓運算速度加快,但相對的也產生耗能的問題,因為每台伺服器性能都會有所不同,所以運算效率也不同,當分配到一樣的工作量時有些性能好的伺服器會提前結束工作,閒置在那邊等待其他伺服器完成,這些等待的時間就造成不必要能量浪費。雲端應用Green Mater是基於Hadoop MapReduce做出改進,篩選虛擬機器效能,在不嚴重影響整體系統效能下將虛擬機器效能低的關閉不使用,進而達到節能的效果。這篇論文針對Green Master加入網路傳輸資料速度新的變數,將網路頻寬與虛擬機器的系統效能一起列入篩選範圍,挑選出合適的虛擬機器。在MapRduce過程中,當資料被分散後並分配到指定的虛擬機器上做運算時,這些運算虛擬機器是分散在不同地方,須透過網路傳輸將這些分散資料傳送到指定虛擬機,擁有較好的運算能力的虛擬機器但網路傳輸慢,卻必須浪費等待資料的傳輸時間,所以網路頻寬的快慢勢必也會影響到整體運算完成的時間,提出了Dynamic Green Master改善Green Master網路傳輸的部分。
    Hadoop evolves from Google cloud system, and is open system. In cloud circumstance Hadoop allocates the tasks by virtual machines or hardware-based computer, obtains the information, and provides service. Hadoop integrates these above-mentioned functions into Internet to gain a lot of computing resource, therefore, computing, hardware performance, and network transfer rate have effect on process efficiency of distributed system. More papers purpose solution to optimize the Hadoop. For example, efficiency server management and according to the process types of data to schedule the tasks, etc. In order to optimize the process speed, Hadoop can start more computers to deal with tasks, but the strategy result in consuming resource overly. Because each server has different performance, their Operational efficiency is also different. If system allocate the tasks of the same workload to each server, the server having great performance can complete the task rapidly, and these servers idle their time to wait other server to complete their tasks, therefore, the waiting time result in wasting unnecessary performance.
    Green Master is based on improvement of MapReduce. Green Master can filter the performance of virtual machines, and not influence system performance to turn off the virtual machines of bad performance. The purpose of Green Master can achieve the goal of energy conservation.
    This paper is aimed at Green Master to add reference value of Network data transfer rate, and filter the proper virtual machines to increase the performance of cloud system once again.
    In procedure of MapReduce data is distributed to assigned virtual machines to be processed. Because cloud system must distribute the data through Network transmission, the virtual machines have great performance, but system transfer data to them slowly in Network. The aforementioned condition idle more time to wait the transfer time so Network bandwidth must influence system performance.We propose Dynamic Green Master to improve the Network transfer of Green Master.
    Appears in Collections:[電機工程學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML89View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback