English  |  正體中文  |  简体中文  |  Items with full text/Total items : 52047/87178 (60%)
Visitors : 8708158      Online Users : 296
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/102700

    Title: 基於KINECT建立3D人臉模型用於人臉辨識系統
    Other Titles: Building 3D face model used to face recognition base on Kinect
    Authors: 許維新;Hsu, Wei-Hsin
    Contributors: 淡江大學電機工程學系碩士班
    Keywords: 人臉辨識;PCA;SVM;Kinect;face recognition;ASM
    Date: 2014
    Issue Date: 2015-05-04 10:02:12 (UTC+8)
    Abstract: 在人臉辨識的相關研究中,側臉的辨識率因側臉的特徵資訊相較正臉來的少,造成辨識上的困難,使得辨識率一直研究學者想要大幅突破的目標,透過增加訓練資料的數量,有助於辨識率的提升,為了蒐集各種角度下之人臉影像,往往耗費大量時間。本論文提出一僅藉由單張正面影像模擬出各角度人臉之3D人臉建模方法,達到節省蒐集各種角度人臉之時間。透過Kinect擷取單張正面彩色及深度影像,經過前處理濾除非人臉之區塊並正規化後,在OpenGL空間中顯示3D人臉模型,透過OpenGL視窗視野角度改變,可以模擬出各種角度下之人臉,將這些人臉保存成2D影像,接著使用PCA降低維度後送入SVM分類。在實驗結果中顯示,用於人臉辨識有不錯之結果。
    The applications of face recognition is increasing day by day. The studies of face recognition are mainly occlusions (sunglasses, hats, masks) , illumination (shadows, glare) , facial expressions, age variation , and pose changes (profile, pitch angle is too large) etc, and the side face recognition has been a difficult problem. We propose a simpler and faster method to create 3D face model. First, using ASM(Active Shape Model) to detection and get the color and depth image of face by Kinect, then we based on the information of the depth image portrayed face in opengl three-dimensional. This method retains much texture of information of the original face images, and to create a complete change of face uneven depth. It still has a good result of repairing the distortion in side face. We can get a set face images of the same person with different angles by the method proposed in this paper. In recognition part, we use PCA(Principal Component Analysis) to reduce the dimensions, and combined SVM(Support Vector Machine) to classify. Experiments show that the side face recognition can have good results.
    Appears in Collections:[電機工程學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback