English  |  正體中文  |  简体中文  |  Items with full text/Total items : 52047/87178 (60%)
Visitors : 8698396      Online Users : 152
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/102614

    Title: 二維準定常拍翼流場及其泡膜顯像
    Other Titles: 2D quasi-steady flow around a flapping wing and its bubble-film flow visualization
    Authors: 黃心綸;Haung, Hsin-Lun
    Contributors: 淡江大學機械與機電工程學系碩士班
    楊龍杰;Yang, Lung-Jieh
    Keywords: 拍翼;二維流場;泡膜;flapping;Two-dimensional flow field;bubble films;PVDF
    Date: 2014
    Issue Date: 2015-05-04 10:00:09 (UTC+8)
    Abstract: 本研究提出以10cm拍翼機進行二維準定常流模擬分析以及以立體攝影術擷取移動邊界。軌跡擷取使用SURFER和GAMBIT將立體攝影的三維軌跡擷取出二維的1/4翼展並生成網格。在Fluent中進行流場模擬,其中準定常CFD模擬在Fluent中被視為二維移動邊界。流場設定上,上風速度在拍翼流場中也得到新的考量。最後計算含有時變的二維流場與對應的升力係數。從拍翼頻率40Hz下一週期之升力係數呈現出與風洞數據及PVDF現地量測數據相似之結果。
    This thesis presents a 2D quasi-steady flow simulation of a 10 cm wingspan flapping wing with given moving boundary fed from stereo-photography measurement. This trajectory work used the softwares Surfer and Gambit to slice a 2D quarter-span cross section from the 3D trajectory by stereo photography. It’s then regarded as a 2D moving boundary for the quasi-steady CFD simulation by ANSYS/Fluent. The upwind direction changing of the flapping flow field has also been novelly considered herein. The computed time-varying outputs include the 2D flow fields and the corresponding lift coefficient. The one cycle history of lift coefficient subjected to 40 Hz flapping shows the qualitative similarity to the corresponding wind tunnel data and PVDF on-site measurement data.
    A novel method utilizing bubble film to observe the flapping flow field has been also developed and tested in this thesis. This work is based on the concept of thin film interference where bubble film of different thickness exhibits different chromatic appearance. Herein, the bubble film was subjected to the flow field of a 10 cm wingspan flapping wing, and a color CCD camera was used to capture the chromatic patterns on the bubble film. The captured photograph was fed into MATLAB to generate RGB values per pixel and corresponding thickness values based on the standard color card for bubble thickness. The commercial finite difference solver in MATLAB was also used to solve the Neumann boundary value problem of Poisson equation to obtain the velocity potential field and the corresponding stream line pattern of the flapping flow field. Some technical difficulties were addressed finally.
    Appears in Collections:[機械與機電工程學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback