淡江大學機構典藏:Item 987654321/102535
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 62819/95882 (66%)
Visitors : 4009447      Online Users : 994
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/102535


    Title: 鉑二氧化矽-碳黑甲醇氧化電催化劑之製備與性質分析
    Other Titles: Preparation and characterization of platinum nanoparticles supported on silica-carbon black nanocomposites for methanol oxidation reaction
    Authors: 葉如玉;Yeh, Ju-Yu
    Contributors: 淡江大學化學工程與材料工程學系碩士班
    林正嵐
    Keywords: 直接甲醇燃料電池;電催化劑;甲醇氧化反應;二氧化矽;Direct Methanol Fuel Cell;electrocatalyst;methanol oxidation reaction;Silica dioxide;platinum
    Date: 2014
    Issue Date: 2015-05-04 09:58:15 (UTC+8)
    Abstract: 本研究為鉑/二氧化矽-碳黑電催化劑之製備及性質分析,其實驗架構主要分為兩部分,Part 1:將碳黑Vulcan XC-72(C)以HNO3或NaOH進行前處理,得到修飾的碳載體(Cn與Cs),並使用含浸法和多元醇還原法還原附載Pt奈米顆粒於碳載體(C、Cn與Cs)之上,得到由含浸法製成之Pt/C系列催化劑(Pt/C-I)和由多元純還原法製成之Pt/C系列電催化劑(Pt/C-P),以不同還原法製程之兩系列電催化劑進行比較,得到有良好甲醇氧化反應(Methanol Oxidation Reaction, MOR)效能與穩定性的最佳製程條件方法。Part 2:經由溶膠/凝膠法製備SiO2奈米顆粒,與碳黑混合成為具有不同SiO2與C比例之(SiO2)xCy奈米複合載體,然後使用Part 1中最佳之電催化劑製成條件,製備Pt/(SiO2)xCy系列電催化劑,並對所得電催化劑之MOR與氧氣還原反應(Oxygen Reduction Reaction, ORR)性能進行量測分析與比較,得到最佳化效能的Pt/(SiO2)xCy電催化劑。
    對製程之電催化劑進X光繞射分析儀、穿透式電子顯微鏡、X光能譜分析儀、感應耦合電漿原子發射光譜分析儀、傅立葉轉換紅外線吸收光譜儀、化學影像能譜分析儀和動態光散射分析儀測量其表面形態與結構性質分析;並使用循環伏安法、計時安培法、線性掃描法和交流阻抗進行MOR效能、ORR效能、電化學活性表面積、CO脫附能力、穩定性及阻力等電化學特性分析。
    Pt/C-I系列和Pt/C-P系列電催化劑,經由表面性質及電化學性質分析,可以知道使用多元純還原法為最佳製程之條件。使用最佳之方法合成Pt/(SiO2)xCy電催化劑,改變SiO2與C之重量比例製成一系列的Pt/(SiO2)xCy電催化劑,經由表
    面性質及電化學性質測試,發現Pt/(SiO2)8C92電催化劑其Pt奈米顆粒均勻分散在載體表面上,且Pt粒徑為3奈米左右;電催化劑具有抗CO毒化能力,當添加適量SiO2不會影響其電子轉移阻力,且添加之SiO2具雙功模式,擁有最佳之MOR效能(821 A/g-Pt)為市售E-TEK Pt/C電催化劑(344 A/g-Pt)之2.4倍。
    The main goal of this study is to develop the new synthesis procedure for Pt/SiO2-C nanocomposite electrocatalysts for methanol oxidation reaction (MOR) and evaluate the MOR efficiency of electrocatalysts. This study has two part experiments. Part one uses two methods (polyol method and impregnation method) and three carbon supports (C, Cs and Cn) to obtain Pt/C-I series and Pt/C-P series electrocatalysts. Using the analysis result of the part one to prepare the Pt/(SiO2)xCy electrocatalysts. Using sol-gel method prepare the silica (SiO2) nanoparticles. Then, SiO2 nanoparticles mix carbon black to obtain (SiO2)xCy nanocomposite materials as new supports of the electrocatalyst and adjusting different weight ratios of SiO2 and carbon black obtain the different Pt/(SiO2)xCy electrocatalysts.
    The electrocatalysts are analyzed the physical and electrochemical properties. Using the transmission electron microscopy (TEM), energy dispersive spectrometer (EDS), inductively coupled plasma-optical emission spectroscopy (ICP-OES) and X-ray diffractometer (XRD), Fourier Transform Infrared Spectroscopy (FTIR) to know the morphologies, compositions and structures of electrocatalysts. The electrochemical activities and stabilities of MOR and ORR are evaluated by cyclic votammetry (CV), chronoamperometry (CA), CO-stripping and electrochemical impedance spectroscopy (EIS). The analysis results of electrocatalysts obtain the optimization Pt/(SiO2)xCy electrocatalyst.
    For Pt/(SiO2)xCy series electroccatalysts, the Pt nanoparticles uniformly dispersed with sizes of 3 nm is obtained. The MOR efficiency and against CO-poisoning phenomena of Pt/(SiO2)xCy series electroccatalysts are sighificantly improve. The optimized of the weight ratios of SiO2 and carbon black as the support of electrocatalysts has the smallest electron transpot resistance. The Pt/(SiO2)8C92 electrocatalyst has the highest MOR efficiency (821 A/g-Pt), and which is about 2.4 times higher than the commercial E-TEK Pt/C electrocatalyst (344 A/g-Pt).
    Appears in Collections:[Graduate Institute & Department of Chemical and Materials Engineering] Thesis

    Files in This Item:

    File SizeFormat
    index.html0KbHTML208View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback