English  |  正體中文  |  简体中文  |  Items with full text/Total items : 51931/87076 (60%)
Visitors : 8487511      Online Users : 98
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/102533


    Title: 以聚苯胺及三氧化鎢薄膜搭配丁二腈聚乙二醇固態電解質組裝可撓式互補型電致色變元件及其性質研究與效能最佳化
    Other Titles: Fabrication, characterization and optimization of flexible complementary electrochromic device based on polyaniline and tungsten trioxide thin films with succinonitrile/polyethylene glycol solid-state electrolyte
    Authors: 陳恩;Chen, En
    Contributors: 淡江大學化學工程與材料工程學系碩士班
    林正嵐;Lin, Cheng-Lan
    Keywords: 電致色變元件;固態電解質;聚苯胺;三氧化鎢;丁二腈;聚乙二醇;Electrochromic device;Solid-state Electrolyte;polyaniline;tungsten trioxide;Succinonitrile;Polyethylene Glycol
    Date: 2014
    Issue Date: 2015-05-04 09:58:13 (UTC+8)
    Abstract: 本研究使用聚苯胺(polyaniline, Pani)及三氧化鎢(tungsten trioxide, WO3)薄膜,搭配丁二腈/聚乙二醇(succinonitrile/polyethylene glycol, SN/PEG)混合物作為固態電解質,組裝可撓式互補型固態電致色變元件(electrochromic device, ECD),探討並最佳化其電致色變效能。
    Pani與WO3薄膜以定電位法析鍍在indium tin oxide (ITO)導電玻璃或indium tin oxide-polyethylene naphthalate (ITO-PEN)導電塑膠上,作為ECD的工作電極,面積為2 × 2 cm2。本研究先以含有0.1 M LiClO4與1.0 mM HClO4之碳酸丙烯酯(propylene carbonate, PC)溶液為電解質,使用析鍍於ITO上之Pani與WO3薄膜為電極組裝液態電解質ECD (l-ECD),以循環伏安法與交流阻抗法分析元件之電化學行為,量測其電致色變性質(包含吸收光譜、穿透率調幅(ΔT%)、著色效率(coloration efficiency, CE)與著色/去色應答時間(tc/tb)),取得Pani與WO3薄膜的最適析鍍參數與電量比,決定元件安全操作電位範圍,並評估其循環使用穩定性。本研究提出新的實驗方法決定元件之安全操作電位範圍。取得最適之薄膜製備參數與ECD的操作條件後,接著使用含有0.1 M LiClO4與1.0 mM HClO4以及不同PEG(分子量=400)含量之SN為固態電解質,並分別以ITO或ITO/PEN為電極基材,組裝固態電解質ECD (s-ECD)與可撓式固態電解質ECD (fs-ECD)。SN中PEG的含量分別為2.5、5.0、7.5、10.0、12.5、15.0、25.0與35.0 wt%,量測其穿透率隨PEG含量之改變,並以光學顯微鏡觀察其表面型態。對所得之ECD進行電化學行為、電致色變性質與穩定性量測,並將所得結果與l-ECD比較。l-ECD在波長700 nm處之ΔT% = 56.66 %,tc/tb = 20.3/9.1秒,CE = 111.1 cm2/C,於1300次著色/去色循環操作ΔT%降至初始值之90%,其值為50.77 %。s-ECD在波長700 nm處之ΔT% = 51.25 %,tc/tb = 28.4/14.4秒,CE = 105.0 cm2/C,於4600次著色/去色循環操作ΔT%降至初始值之90%,其值為39.01 %。fs-ECD於700 nm處之ΔT% = 50.76 %,tc/tb = 26.6/16.3秒,CE = 100.4 cm2/C,於4400次著色/去色循環操作ΔT%降至初始值之90%,其值為41.25 %。
    In this study, flexible complementary electrochromic devices (ECD) constructed using polyaniline (Pani) and tungsten trioxide (WO3) thin films with succinonitrile/polyethylene glycol (SN/PEG) composite solid-state electrolyte are fabricated and characterized. Pani and WO3 thin films are prepared by potentiostatic electrodeposition on indium tin oxide (ITO) conducting glass (at part 1 and part 2) or indium tin oxide-polyethylene naphthalate (ITO-PEN) conducting plastic (part 3) as the electrochromic layers. At part 1, liquid electrolyte contain 0.1 M LiClO4 and 1 mM HClO4 in propylene carbonate (PC) solution are prepared and are used to fabricate the ECD. The area of the ECD is 2 × 2 cm2. ECD constructed using stationarty deposition time of Pani thin film and different deposition time of WO3 thin film, then find the best deposition time ratio according to transmittance modulation ability (ΔT) and current density. Using the new method to find the best operation potential range of ECD. Composite solid-state electrolytes contain 0.1 M LiClO4 and 1 mM HClO4 with different SN/PEG ratios (from 95/5 to 65/35 (w/w)) are prepared and are used to fabricate the ECDs. The electrochromic performances of the ECDs using a liquid electrolyte (l-ECD) with ITO or solid-state electrolyte with ITO (s-ECD) or solid-state electrolyte with ITO-PEN (fs-ECD) are investigated and compared. Ion diffusion rate of liquid electrolyte and solid-state electrolyte are investigated by electrochemical impedance spectroscopy (EIS).
    Experimental results reveal that the deposition time ratio of Pani thin film and WO3 thin film as 100s:1200s have larger ΔT and current density than other ratio. The best operation potential of the ECD is determined to be 1.0 V for coloring and -0.3 V for bleaching process. Solid-state electrolyte of SN/PEG ratio (90/10) can be effectively inhibit crystallization of SN. l-ECD achieved ΔT of 56.66 % at 700 nm. The ΔT% of s-ECD at SN/PEG ratio of 90/10 is 51.25 % at 700 nm. The ΔT of fs-ECD at SN/PEG ratio of 90/10 is 50.76 % at 700 nm. The coloring/bleaching response times are 20.3 s/9.1 s for l-ECD and are 28.4 s/14.4 s for s-ECD (SN/PEG = 90/10), and fs-ECD (SN/PEG = 90/10) are 26.6 s/16.3 s.The coloration efficiency of l-ECD、s-ECD (SN/PEG = 90/10) and fs-ECD (SN/PEG = 90/10) are 97.0、105.0 and 100.4 cm2/C, respectively. The l-ECD after switching for 1300 cycles, ΔT% decline of 10% compared to the initial ΔT%. The s-ECD (SN/PEG = 90/10) after switching for 4600 cycles, ΔT% decline of 10% compared to the initial ΔT%. The fs-ECD (SN/PEG = 90/10) after switching for 4400 cycles, ΔT% decline of 10% compared to the initial ΔT%. The l-ECD less stable than s-ECD and fs-ECD because liquid electrolyte prone to leak.
    Appears in Collections:[化學工程與材料工程學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML66View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback