English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 49378/84106 (59%)
造訪人次 : 7378073      線上人數 : 67
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/102531


    題名: 設計溢流管結構以提升水旋風分離器之分離效率
    其他題名: Design of overflow conduit structure for improving hydrocyclone separation efficiency
    作者: 周詩評;Chou, Shih-Ping
    貢獻者: 淡江大學化學工程與材料工程學系碩士班
    黃國楨
    關鍵詞: 水旋風分離器;溢流管;分離效率;Hydrocyclone;overflow conduit;Separation efficiency
    日期: 2014
    上傳時間: 2015-05-04 09:58:10 (UTC+8)
    摘要: 水旋風分離器的幾何結構會影響其內部流場與分離效率,本研究以直徑為10 mm水旋風分離器為例,探討溢流管之幾何結構對流體之流態與固體粒子之分離效率的影響。探討的溢流管結構可分成5種型式,其中A型為寬型進口,B、C、D與E型為窄型進口,A與B型兩者同為溢流管均勻加厚結構,其中初始結構A-I溢流管厚度為1 mm之型式,做為基礎比較,C型為縮減分離器圓柱區直徑之結構,D與E型同樣將溢流管之外表面的一部分製作成圓錐形,但方向相反。本研究使用平均粒徑為10 μm的碳酸鈣粒子樣品進行數值模擬與實驗,首先使用美國Fluent套裝軟體,利用SIMPLE(Semi-Implicit Method for Pressure-Linked Equation)法則進行質量平衡與動量平衡等統御方程式之計算,紊流使用雷諾應力模型,並使用PRESTO!(PREssure STerring Option)進行壓力計算之疊代,分析流體之速度分布、壓降分布、動能分布、以及粒子軌跡,再藉以估算粒子的分離效率。模擬結果顯示,在10 m/s的進料速度下,A型結構之無因次溢流管厚度從0.1增加到0.2,約能提升總分離效率10%,B型結構之無因次溢流管厚度從0.1增加到0.2,約能提升總分離14%,最佳溢流管之無因次厚度為0.14。C型結構之總分離效率與初始結構相同,反而增加壓降。而在溢流管外表面增加錐型結構的D與E型可以增加總分離效率17-19%。若以壓降、分離效率等觀點比較測試的分離器,在溢流管外表面增加一半長度的D-II型結構之壓降為47,545 Pa、總分離效率提升17%,分離粒徑為5 μm,是其中的最佳化設計。以A-I原始結構的分離器進行實驗,實驗的粒子分離效率值與模擬結果相近,證明本研究之模擬結果具有其可靠性。
    Geometry of the hydrocyclone will affect its internal flow field and separation efficiency, this study use 10-mm diameter hydrocyclone. Investigate the effect of the geometry of the overflow conduit with solid particle separation efficiency and flow field. Type A with wider inlet, B, C, D and E with narrow inlet. Type A and B both with the uniform thickening of overflow conduit, where the initial structure of A-I overflow conduit thickness 1 mm. Type C is reduce the diameter of hydrocyclone, type D and E are made into a conical surface portion of overflow conduit outside. In this study, the average particle size of 10 μm sample of calcium carbonate to simulate the experimental section. First, using the USA Fluent software package by governing equations to calculate the materials and balance and momentum balance in SIMPLE(Semi-Implicit Method for Pressure-Linked Equation) algorithm, the turbulent kinetic energy using the Reynolds stress model and using PRESTO! calculate pressure. Analysis the velocity distribution of fluid, pressure drop distribution, turbulent kinetic energy distribution and particle trajectories and then obtain particle separation efficiency. Simulation results show that VF=10 m/s, type A structure dimensionless overflow conduit thickness from 0.1 to 0.2, can improve the overall separation efficiency about 10%. Type B structure dimensionless overflow conduit thickness from 0.1 to 0.2 can improve the overall separation efficiency from 14%, optimal structure dimensionless of overflow conduit is 0.14. The overall separation efficiency of C structure with the same with initial structure, but increased pressure drop. In the outside surface of the overflow conduit, D and E install the conical structure, can increase the overall separation efficiency 17-19%. In terms of pressure drop and the separation efficiency comparison the separator, the outer surface of conduit increase a half length of D-II which the pressure drop of 47,545 Pa, improve the overall separation efficiency of 17% and a particle size of 5μm, is the best design. To the original structural of A-I experiment, experiment and simulation particle separation efficiency values were similar, the simulation results of this study demonstrate that it has its reliability.
    顯示於類別:[化學工程與材料工程學系暨研究所] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    index.html0KbHTML74檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋