English  |  正體中文  |  简体中文  |  Items with full text/Total items : 52048/87179 (60%)
Visitors : 8882153      Online Users : 235
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/102512

    Title: 直接由合成氣產製高值酒精燃料之製程研究暨其工程經濟分析
    Other Titles: Technoeconomic assessment for the direct production of high-value added ethanol fuel from syngas
    Authors: 黃詩芸;Huang, Shih-Yun
    Contributors: 淡江大學化學工程與材料工程學系碩士班
    陳錫仁;Chen, Hsi-Jen
    Keywords: 酒精燃料;程序設計與整合;高值化學品;共沸蒸餾;變壓蒸餾;滲透蒸發;經濟評估;合成氣;Ethanol Fuel;Process Design and Integration;High-value Added Chemicals;Azeotropic Distillation;Pressure-Swing Distillation;pervaporation;Economic Evaluation;Syngas
    Date: 2014
    Issue Date: 2015-05-04 09:57:44 (UTC+8)
    Abstract: 全世界有很多國家利用酒精去羼配汽油,羼配的體積百分比有3%~85%,英文冠上E3汽油,即指3 vol% 酒精去羼配97 vol% 汽油;E5~E25的酒精羼配還有一個英文字 “gasohol”(酒精汽油)。目前台灣中油公司以E3羼配無鉛汽油,E3多少可降低二氧化碳的排放;然而,酒精的羼配率還不到5 vol%(E5)。
    本論文提出一個創新的酒精燃料合成法,即直接由合成氣產製高值酒精燃料之製程設計暨其工程經濟分析。合成氣來自煤炭氣化複循環發電系統(IGCC),以酒精燃料年產量一萬公噸且純度 >99.3 vol% 為設計目標進行程序設計與整合。反應器系統設計係以熱力學原理為基礎,分離系統設計使用三種不同之純化製程進行比較:第一種為共沸蒸餾法,採用環己烷為共沸劑,其次為變壓蒸餾法,使用兩個不同操作壓力的蒸餾塔進行純化,以及第三種滲透蒸發法係使用親水性薄膜來分離酒精與水。研究最後進行熱能整合及其工程經濟分析。吾人發現:採用滲透蒸發製程為最經濟的製程設計,其年製造成本、酒精燃料每公升之製造成本分別為US$9.03×106、US$0.76。
    本論文研究主要應用“Aspen Plus”、“Aspen Custom Modeler”(ACM)與“SuperTarget”三套化工程序軟體;前兩者用於程序合成與設計,後者則用於狹點分析及換熱器網路合成。
    Several common ethanol fuel mixtures (E3-E85) are in use around the world. Ethanol fuel mixtures have “E” numbers which describe the percentage of ethanol fuel in the mixture by volume, for example, E3 is 3% anhydrous ethanol and 97% gasoline. Low-ethanol blends, from E5 to E25, are also known as gasohol. At the present moment, the CPC (Taiwan) sells E3 as partial replacements to the more expensive unleaded gasoline in an attempt to reduce CO2 emission. However, it is still far less than E5 to be regarded as gasohol.
    In this thesis, we have presented a new route to produce ethanol fuel directly from syngas derived from IGCC plants. On the basis of 10,000 tonnes per year of ethanol fuel with purity greater than 99.3 vol%, the engineering economic analysis is also assessed. It should be emphasized that the process design on the reactor system is based on the thermodynamic principles. In regard to the separation system design, we used three different methods to purify the hydrous ethanol. The first is the azeotropic distillation process with cyclohexane as the entrainer, the second is the pressure-swing distillation utilizing two distillation columns that operate at varying pressures and the third is the pervaporation process with hydrophilic membrane. It was found that, among the three purification processes, pervaporation is the most economic one with a yearly manufacture cost of US$9.03 x 106 and a per-liter-cost of the ethanol fuel US$0.76.
    Three kinds of software are used in the research—Aspen Plus, Aspen Custom Modeler (ACM), and SuperTarget. The first and second are applied to implement the process synthesis and design; the third is applied to perform the pinch analysis and the synthesis of heat exchanger network.
    Appears in Collections:[化學工程與材料工程學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback